ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimpac GIF version

Theorem biimpac 296
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
biimpac ((𝜓𝜑) → 𝜒)

Proof of Theorem biimpac
StepHypRef Expression
1 biimpa.1 . . 3 (𝜑 → (𝜓𝜒))
21biimpcd 158 . 2 (𝜓 → (𝜑𝜒))
32imp 123 1 ((𝜓𝜑) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  gencbvex2  2773  ordtri2or2exmidlem  4503  onsucelsucexmidlem  4506  ordsuc  4540  onsucuni2  4541  poltletr  5004  tz6.12-1  5513  nfunsn  5520  nnaordex  6495  th3qlem1  6603  ssfilem  6841  diffitest  6853  nqnq0pi  7379  distrlem1prl  7523  distrlem1pru  7524  eqle  7990  flodddiv4  11871  zabsle1  13550
  Copyright terms: Public domain W3C validator