| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpac | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpac | ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpcd 159 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: gencbvex2 2848 ordtri2or2exmidlem 4617 onsucelsucexmidlem 4620 ordsuc 4654 onsucuni2 4655 poltletr 5128 tz6.12-1 5653 nfunsn 5663 nnaordex 6672 th3qlem1 6782 ssfilem 7033 diffitest 7045 nqnq0pi 7621 distrlem1prl 7765 distrlem1pru 7766 eqle 8234 swrd0g 11187 flodddiv4 12442 zabsle1 15672 |
| Copyright terms: Public domain | W3C validator |