ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimpac GIF version

Theorem biimpac 298
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
biimpac ((𝜓𝜑) → 𝜒)

Proof of Theorem biimpac
StepHypRef Expression
1 biimpa.1 . . 3 (𝜑 → (𝜓𝜒))
21biimpcd 159 . 2 (𝜓 → (𝜑𝜒))
32imp 124 1 ((𝜓𝜑) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  gencbvex2  2820  ordtri2or2exmidlem  4574  onsucelsucexmidlem  4577  ordsuc  4611  onsucuni2  4612  poltletr  5083  tz6.12-1  5603  nfunsn  5611  nnaordex  6614  th3qlem1  6724  ssfilem  6972  diffitest  6984  nqnq0pi  7551  distrlem1prl  7695  distrlem1pru  7696  eqle  8164  swrd0g  11113  flodddiv4  12247  zabsle1  15476
  Copyright terms: Public domain W3C validator