![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpac | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpac | ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpcd 159 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | imp 124 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: gencbvex2 2807 ordtri2or2exmidlem 4558 onsucelsucexmidlem 4561 ordsuc 4595 onsucuni2 4596 poltletr 5066 tz6.12-1 5581 nfunsn 5589 nnaordex 6581 th3qlem1 6691 ssfilem 6931 diffitest 6943 nqnq0pi 7498 distrlem1prl 7642 distrlem1pru 7643 eqle 8111 flodddiv4 12075 zabsle1 15115 |
Copyright terms: Public domain | W3C validator |