![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpac | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpac | ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpcd 158 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | imp 123 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: gencbvex2 2702 ordtri2or2exmidlem 4399 onsucelsucexmidlem 4402 ordsuc 4436 onsucuni2 4437 poltletr 4895 tz6.12-1 5400 nfunsn 5407 nnaordex 6374 th3qlem1 6482 ssfilem 6719 diffitest 6731 nqnq0pi 7187 distrlem1prl 7331 distrlem1pru 7332 eqle 7771 flodddiv4 11472 |
Copyright terms: Public domain | W3C validator |