Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpac | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpac | ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpcd 158 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | imp 123 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: gencbvex2 2773 ordtri2or2exmidlem 4503 onsucelsucexmidlem 4506 ordsuc 4540 onsucuni2 4541 poltletr 5004 tz6.12-1 5513 nfunsn 5520 nnaordex 6495 th3qlem1 6603 ssfilem 6841 diffitest 6853 nqnq0pi 7379 distrlem1prl 7523 distrlem1pru 7524 eqle 7990 flodddiv4 11871 zabsle1 13550 |
Copyright terms: Public domain | W3C validator |