Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpac | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpac | ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpcd 158 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | imp 123 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: gencbvex2 2777 ordtri2or2exmidlem 4510 onsucelsucexmidlem 4513 ordsuc 4547 onsucuni2 4548 poltletr 5011 tz6.12-1 5523 nfunsn 5530 nnaordex 6507 th3qlem1 6615 ssfilem 6853 diffitest 6865 nqnq0pi 7400 distrlem1prl 7544 distrlem1pru 7545 eqle 8011 flodddiv4 11893 zabsle1 13694 |
Copyright terms: Public domain | W3C validator |