ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimpac GIF version

Theorem biimpac 298
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
biimpac ((𝜓𝜑) → 𝜒)

Proof of Theorem biimpac
StepHypRef Expression
1 biimpa.1 . . 3 (𝜑 → (𝜓𝜒))
21biimpcd 159 . 2 (𝜓 → (𝜑𝜒))
32imp 124 1 ((𝜓𝜑) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  gencbvex2  2825  ordtri2or2exmidlem  4592  onsucelsucexmidlem  4595  ordsuc  4629  onsucuni2  4630  poltletr  5102  tz6.12-1  5626  nfunsn  5634  nnaordex  6637  th3qlem1  6747  ssfilem  6998  diffitest  7010  nqnq0pi  7586  distrlem1prl  7730  distrlem1pru  7731  eqle  8199  swrd0g  11151  flodddiv4  12362  zabsle1  15591
  Copyright terms: Public domain W3C validator