| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmword | GIF version | ||
| Description: Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnmword | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 300 | . . . 4 ⊢ (∅ ∈ 𝐶 → (𝐵 ∈ 𝐴 ↔ (𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶))) | |
| 2 | nnmord 6661 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) | |
| 3 | 2 | 3com12 1231 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) |
| 4 | 1, 3 | sylan9bbr 463 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵 ∈ 𝐴 ↔ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) |
| 5 | 4 | notbid 671 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) |
| 6 | simpl1 1024 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐴 ∈ ω) | |
| 7 | simpl2 1025 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐵 ∈ ω) | |
| 8 | nntri1 6640 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 9 | 6, 7, 8 | syl2anc 411 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| 10 | simpl3 1026 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐶 ∈ ω) | |
| 11 | nnmcl 6625 | . . . 4 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·o 𝐴) ∈ ω) | |
| 12 | 10, 6, 11 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ ω) |
| 13 | nnmcl 6625 | . . . 4 ⊢ ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·o 𝐵) ∈ ω) | |
| 14 | 10, 7, 13 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐵) ∈ ω) |
| 15 | nntri1 6640 | . . 3 ⊢ (((𝐶 ·o 𝐴) ∈ ω ∧ (𝐶 ·o 𝐵) ∈ ω) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ¬ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) | |
| 16 | 12, 14, 15 | syl2anc 411 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ¬ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) |
| 17 | 5, 9, 16 | 3bitr4d 220 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 ∈ wcel 2200 ⊆ wss 3197 ∅c0 3491 ωcom 4681 (class class class)co 6000 ·o comu 6558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-oadd 6564 df-omul 6565 |
| This theorem is referenced by: nnmcan 6663 archnqq 7600 |
| Copyright terms: Public domain | W3C validator |