![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimparc | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprcd 160 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | imp 124 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biantr 954 elrab3t 2916 difprsnss 3757 elpw2g 4186 elon2 4408 ideqg 4814 elrnmpt1s 4913 elrnmptg 4915 fun11iun 5522 eqfnfv2 5657 fmpt 5709 elunirn 5810 spc2ed 6288 tposfo2 6322 tposf12 6324 dom2lem 6828 enfii 6932 ac6sfi 6956 ltexprlemm 7662 elreal2 7892 fihasheqf1oi 10861 fprod2dlemstep 11768 bastop2 14263 2lgsoddprm 15270 |
Copyright terms: Public domain | W3C validator |