| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > biimparc | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) | 
| Ref | Expression | 
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprcd 160 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) | 
| 3 | 2 | imp 124 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: biantr 954 elrab3t 2919 difprsnss 3760 elpw2g 4189 elon2 4411 ideqg 4817 elrnmpt1s 4916 elrnmptg 4918 fun11iun 5525 eqfnfv2 5660 fmpt 5712 elunirn 5813 spc2ed 6291 tposfo2 6325 tposf12 6327 dom2lem 6831 enfii 6935 ac6sfi 6959 ltexprlemm 7667 elreal2 7897 fihasheqf1oi 10879 fprod2dlemstep 11787 bastop2 14320 2lgsoddprm 15354 | 
| Copyright terms: Public domain | W3C validator |