![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimparc | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprcd 158 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | imp 122 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: biantr 898 elrab3t 2770 difprsnss 3575 elpw2g 3992 elon2 4203 ideqg 4587 elrnmpt1s 4685 elrnmptg 4687 fun11iun 5274 eqfnfv2 5398 fmpt 5449 elunirn 5545 spc2ed 5998 tposfo2 6032 tposf12 6034 dom2lem 6489 enfii 6590 ac6sfi 6614 ltexprlemm 7159 elreal2 7368 fihasheqf1oi 10196 |
Copyright terms: Public domain | W3C validator |