| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimparc | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprcd 160 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantr 954 elrab3t 2919 difprsnss 3761 elpw2g 4190 elon2 4412 ideqg 4818 elrnmpt1s 4917 elrnmptg 4919 fun11iun 5528 eqfnfv2 5663 fmpt 5715 elunirn 5816 spc2ed 6300 tposfo2 6334 tposf12 6336 dom2lem 6840 enfii 6944 ac6sfi 6968 ltexprlemm 7684 elreal2 7914 fihasheqf1oi 10896 fprod2dlemstep 11804 bastop2 14404 2lgsoddprm 15438 |
| Copyright terms: Public domain | W3C validator |