| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimparc | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprcd 160 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantr 958 elrab3t 2958 difprsnss 3806 elpw2g 4240 elon2 4467 ideqg 4873 elrnmpt1s 4974 elrnmptg 4976 fun11iun 5595 eqfnfv2 5735 fmpt 5787 elunirn 5896 spc2ed 6385 tposfo2 6419 tposf12 6421 dom2lem 6931 enfii 7044 ac6sfi 7068 ltexprlemm 7795 elreal2 8025 fihasheqf1oi 11017 fprod2dlemstep 12141 bastop2 14766 2lgsoddprm 15800 |
| Copyright terms: Public domain | W3C validator |