| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimparc | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprcd 160 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantr 958 elrab3t 2958 difprsnss 3805 elpw2g 4239 elon2 4464 ideqg 4870 elrnmpt1s 4970 elrnmptg 4972 fun11iun 5589 eqfnfv2 5726 fmpt 5778 elunirn 5883 spc2ed 6369 tposfo2 6403 tposf12 6405 dom2lem 6913 enfii 7024 ac6sfi 7048 ltexprlemm 7775 elreal2 8005 fihasheqf1oi 10996 fprod2dlemstep 12119 bastop2 14743 2lgsoddprm 15777 |
| Copyright terms: Public domain | W3C validator |