ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimparc GIF version

Theorem biimparc 299
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
biimparc ((𝜒𝜑) → 𝜓)

Proof of Theorem biimparc
StepHypRef Expression
1 biimpa.1 . . 3 (𝜑 → (𝜓𝜒))
21biimprcd 160 . 2 (𝜒 → (𝜑𝜓))
32imp 124 1 ((𝜒𝜑) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biantr  958  elrab3t  2958  difprsnss  3806  elpw2g  4240  elon2  4467  ideqg  4873  elrnmpt1s  4974  elrnmptg  4976  fun11iun  5595  eqfnfv2  5735  fmpt  5787  elunirn  5896  spc2ed  6385  tposfo2  6419  tposf12  6421  dom2lem  6931  enfii  7044  ac6sfi  7068  ltexprlemm  7795  elreal2  8025  fihasheqf1oi  11017  fprod2dlemstep  12141  bastop2  14766  2lgsoddprm  15800
  Copyright terms: Public domain W3C validator