ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimparc GIF version

Theorem biimparc 299
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
biimparc ((𝜒𝜑) → 𝜓)

Proof of Theorem biimparc
StepHypRef Expression
1 biimpa.1 . . 3 (𝜑 → (𝜓𝜒))
21biimprcd 160 . 2 (𝜒 → (𝜑𝜓))
32imp 124 1 ((𝜒𝜑) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biantr  954  elrab3t  2915  difprsnss  3756  elpw2g  4185  elon2  4407  ideqg  4813  elrnmpt1s  4912  elrnmptg  4914  fun11iun  5521  eqfnfv2  5656  fmpt  5708  elunirn  5809  spc2ed  6286  tposfo2  6320  tposf12  6322  dom2lem  6826  enfii  6930  ac6sfi  6954  ltexprlemm  7660  elreal2  7890  fihasheqf1oi  10858  fprod2dlemstep  11765  bastop2  14252
  Copyright terms: Public domain W3C validator