ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimparc GIF version

Theorem biimparc 299
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
biimparc ((𝜒𝜑) → 𝜓)

Proof of Theorem biimparc
StepHypRef Expression
1 biimpa.1 . . 3 (𝜑 → (𝜓𝜒))
21biimprcd 160 . 2 (𝜒 → (𝜑𝜓))
32imp 124 1 ((𝜒𝜑) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biantr  958  elrab3t  2958  difprsnss  3805  elpw2g  4239  elon2  4464  ideqg  4870  elrnmpt1s  4970  elrnmptg  4972  fun11iun  5589  eqfnfv2  5726  fmpt  5778  elunirn  5883  spc2ed  6369  tposfo2  6403  tposf12  6405  dom2lem  6913  enfii  7024  ac6sfi  7048  ltexprlemm  7775  elreal2  8005  fihasheqf1oi  10996  fprod2dlemstep  12119  bastop2  14743  2lgsoddprm  15777
  Copyright terms: Public domain W3C validator