Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimparc | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprcd 159 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | imp 123 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biantr 947 elrab3t 2885 difprsnss 3716 elpw2g 4140 elon2 4359 ideqg 4760 elrnmpt1s 4859 elrnmptg 4861 fun11iun 5461 eqfnfv2 5592 fmpt 5644 elunirn 5743 spc2ed 6210 tposfo2 6244 tposf12 6246 dom2lem 6747 enfii 6849 ac6sfi 6873 ltexprlemm 7551 elreal2 7781 fihasheqf1oi 10711 fprod2dlemstep 11574 bastop2 12839 |
Copyright terms: Public domain | W3C validator |