ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimparc GIF version

Theorem biimparc 299
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
biimparc ((𝜒𝜑) → 𝜓)

Proof of Theorem biimparc
StepHypRef Expression
1 biimpa.1 . . 3 (𝜑 → (𝜓𝜒))
21biimprcd 160 . 2 (𝜒 → (𝜑𝜓))
32imp 124 1 ((𝜒𝜑) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biantr  955  elrab3t  2929  difprsnss  3773  elpw2g  4204  elon2  4427  ideqg  4833  elrnmpt1s  4933  elrnmptg  4935  fun11iun  5550  eqfnfv2  5685  fmpt  5737  elunirn  5842  spc2ed  6326  tposfo2  6360  tposf12  6362  dom2lem  6870  enfii  6978  ac6sfi  7002  ltexprlemm  7720  elreal2  7950  fihasheqf1oi  10939  fprod2dlemstep  11977  bastop2  14600  2lgsoddprm  15634
  Copyright terms: Public domain W3C validator