![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimparc | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprcd 160 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | imp 124 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biantr 954 elrab3t 2915 difprsnss 3756 elpw2g 4185 elon2 4407 ideqg 4813 elrnmpt1s 4912 elrnmptg 4914 fun11iun 5521 eqfnfv2 5656 fmpt 5708 elunirn 5809 spc2ed 6286 tposfo2 6320 tposf12 6322 dom2lem 6826 enfii 6930 ac6sfi 6954 ltexprlemm 7660 elreal2 7890 fihasheqf1oi 10858 fprod2dlemstep 11765 bastop2 14252 |
Copyright terms: Public domain | W3C validator |