Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimparc | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprcd 159 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | imp 123 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biantr 942 elrab3t 2881 difprsnss 3711 elpw2g 4135 elon2 4354 ideqg 4755 elrnmpt1s 4854 elrnmptg 4856 fun11iun 5453 eqfnfv2 5584 fmpt 5635 elunirn 5734 spc2ed 6201 tposfo2 6235 tposf12 6237 dom2lem 6738 enfii 6840 ac6sfi 6864 ltexprlemm 7541 elreal2 7771 fihasheqf1oi 10701 fprod2dlemstep 11563 bastop2 12724 |
Copyright terms: Public domain | W3C validator |