| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimparc | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimparc | ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprcd 160 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantr 955 elrab3t 2929 difprsnss 3773 elpw2g 4204 elon2 4427 ideqg 4833 elrnmpt1s 4933 elrnmptg 4935 fun11iun 5550 eqfnfv2 5685 fmpt 5737 elunirn 5842 spc2ed 6326 tposfo2 6360 tposf12 6362 dom2lem 6870 enfii 6978 ac6sfi 7002 ltexprlemm 7720 elreal2 7950 fihasheqf1oi 10939 fprod2dlemstep 11977 bastop2 14600 2lgsoddprm 15634 |
| Copyright terms: Public domain | W3C validator |