Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvopab6 | GIF version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvopab6.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} |
fvopab6.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
fvopab6.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
fvopab6 | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ V) | |
2 | fvopab6.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | fvopab6.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 3 | eqeq2d 2177 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
5 | 2, 4 | anbi12d 465 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝜑 ∧ 𝑦 = 𝐵) ↔ (𝜓 ∧ 𝑦 = 𝐶))) |
6 | iba 298 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝜓 ↔ (𝜓 ∧ 𝑦 = 𝐶))) | |
7 | 6 | bicomd 140 | . . . 4 ⊢ (𝑦 = 𝐶 → ((𝜓 ∧ 𝑦 = 𝐶) ↔ 𝜓)) |
8 | moeq 2901 | . . . . . 6 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
9 | 8 | moani 2084 | . . . . 5 ⊢ ∃*𝑦(𝜑 ∧ 𝑦 = 𝐵) |
10 | 9 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ V → ∃*𝑦(𝜑 ∧ 𝑦 = 𝐵)) |
11 | fvopab6.1 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} | |
12 | vex 2729 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
13 | 12 | biantrur 301 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))) |
14 | 13 | opabbii 4049 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))} |
15 | 11, 14 | eqtri 2186 | . . . 4 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))} |
16 | 5, 7, 10, 15 | fvopab3ig 5560 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑅) → (𝜓 → (𝐹‘𝐴) = 𝐶)) |
17 | 1, 16 | sylan 281 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝜓 → (𝐹‘𝐴) = 𝐶)) |
18 | 17 | 3impia 1190 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∃*wmo 2015 ∈ wcel 2136 Vcvv 2726 {copab 4042 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |