ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul0eqap GIF version

Theorem mul0eqap 8689
Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
Hypotheses
Ref Expression
mul0eqap.a (𝜑𝐴 ∈ ℂ)
mul0eqap.b (𝜑𝐵 ∈ ℂ)
mul0eqap.ab (𝜑𝐴 # 𝐵)
mul0eqap.0 (𝜑 → (𝐴 · 𝐵) = 0)
Assertion
Ref Expression
mul0eqap (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0))

Proof of Theorem mul0eqap
StepHypRef Expression
1 mul0eqap.ab . . . 4 (𝜑𝐴 # 𝐵)
2 mul0eqap.a . . . . 5 (𝜑𝐴 ∈ ℂ)
3 mul0eqap.b . . . . 5 (𝜑𝐵 ∈ ℂ)
4 0cnd 8012 . . . . 5 (𝜑 → 0 ∈ ℂ)
5 apcotr 8626 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0)))
62, 3, 4, 5syl3anc 1249 . . . 4 (𝜑 → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0)))
71, 6mpd 13 . . 3 (𝜑 → (𝐴 # 0 ∨ 𝐵 # 0))
8 mul0eqap.0 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = 0)
98adantr 276 . . . . . 6 ((𝜑𝐴 # 0) → (𝐴 · 𝐵) = 0)
103adantr 276 . . . . . . 7 ((𝜑𝐴 # 0) → 𝐵 ∈ ℂ)
11 0cnd 8012 . . . . . . 7 ((𝜑𝐴 # 0) → 0 ∈ ℂ)
122, 3mulcld 8040 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
1312adantr 276 . . . . . . 7 ((𝜑𝐴 # 0) → (𝐴 · 𝐵) ∈ ℂ)
14 ibar 301 . . . . . . . 8 (𝐴 # 0 → (𝐵 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0)))
152, 3mulap0bd 8676 . . . . . . . 8 (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0))
1614, 15sylan9bbr 463 . . . . . . 7 ((𝜑𝐴 # 0) → (𝐵 # 0 ↔ (𝐴 · 𝐵) # 0))
1710, 11, 13, 11, 16apcon4bid 8643 . . . . . 6 ((𝜑𝐴 # 0) → (𝐵 = 0 ↔ (𝐴 · 𝐵) = 0))
189, 17mpbird 167 . . . . 5 ((𝜑𝐴 # 0) → 𝐵 = 0)
1918ex 115 . . . 4 (𝜑 → (𝐴 # 0 → 𝐵 = 0))
208adantr 276 . . . . . 6 ((𝜑𝐵 # 0) → (𝐴 · 𝐵) = 0)
212adantr 276 . . . . . . 7 ((𝜑𝐵 # 0) → 𝐴 ∈ ℂ)
22 0cnd 8012 . . . . . . 7 ((𝜑𝐵 # 0) → 0 ∈ ℂ)
2312adantr 276 . . . . . . 7 ((𝜑𝐵 # 0) → (𝐴 · 𝐵) ∈ ℂ)
24 iba 300 . . . . . . . 8 (𝐵 # 0 → (𝐴 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0)))
2524, 15sylan9bbr 463 . . . . . . 7 ((𝜑𝐵 # 0) → (𝐴 # 0 ↔ (𝐴 · 𝐵) # 0))
2621, 22, 23, 22, 25apcon4bid 8643 . . . . . 6 ((𝜑𝐵 # 0) → (𝐴 = 0 ↔ (𝐴 · 𝐵) = 0))
2720, 26mpbird 167 . . . . 5 ((𝜑𝐵 # 0) → 𝐴 = 0)
2827ex 115 . . . 4 (𝜑 → (𝐵 # 0 → 𝐴 = 0))
2919, 28orim12d 787 . . 3 (𝜑 → ((𝐴 # 0 ∨ 𝐵 # 0) → (𝐵 = 0 ∨ 𝐴 = 0)))
307, 29mpd 13 . 2 (𝜑 → (𝐵 = 0 ∨ 𝐴 = 0))
3130orcomd 730 1 (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  cc 7870  0cc0 7872   · cmul 7877   # cap 8600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator