Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mul0eqap | GIF version |
Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.) |
Ref | Expression |
---|---|
mul0eqap.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mul0eqap.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mul0eqap.ab | ⊢ (𝜑 → 𝐴 # 𝐵) |
mul0eqap.0 | ⊢ (𝜑 → (𝐴 · 𝐵) = 0) |
Ref | Expression |
---|---|
mul0eqap | ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul0eqap.ab | . . . 4 ⊢ (𝜑 → 𝐴 # 𝐵) | |
2 | mul0eqap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | mul0eqap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 0cnd 7913 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℂ) | |
5 | apcotr 8526 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0))) | |
6 | 2, 3, 4, 5 | syl3anc 1233 | . . . 4 ⊢ (𝜑 → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0))) |
7 | 1, 6 | mpd 13 | . . 3 ⊢ (𝜑 → (𝐴 # 0 ∨ 𝐵 # 0)) |
8 | mul0eqap.0 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · 𝐵) = 0) | |
9 | 8 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐴 · 𝐵) = 0) |
10 | 3 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → 𝐵 ∈ ℂ) |
11 | 0cnd 7913 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → 0 ∈ ℂ) | |
12 | 2, 3 | mulcld 7940 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) |
13 | 12 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐴 · 𝐵) ∈ ℂ) |
14 | ibar 299 | . . . . . . . 8 ⊢ (𝐴 # 0 → (𝐵 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0))) | |
15 | 2, 3 | mulap0bd 8575 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) |
16 | 14, 15 | sylan9bbr 460 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐵 # 0 ↔ (𝐴 · 𝐵) # 0)) |
17 | 10, 11, 13, 11, 16 | apcon4bid 8543 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐵 = 0 ↔ (𝐴 · 𝐵) = 0)) |
18 | 9, 17 | mpbird 166 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 # 0) → 𝐵 = 0) |
19 | 18 | ex 114 | . . . 4 ⊢ (𝜑 → (𝐴 # 0 → 𝐵 = 0)) |
20 | 8 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 · 𝐵) = 0) |
21 | 2 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → 𝐴 ∈ ℂ) |
22 | 0cnd 7913 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → 0 ∈ ℂ) | |
23 | 12 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 · 𝐵) ∈ ℂ) |
24 | iba 298 | . . . . . . . 8 ⊢ (𝐵 # 0 → (𝐴 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0))) | |
25 | 24, 15 | sylan9bbr 460 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 # 0 ↔ (𝐴 · 𝐵) # 0)) |
26 | 21, 22, 23, 22, 25 | apcon4bid 8543 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 = 0 ↔ (𝐴 · 𝐵) = 0)) |
27 | 20, 26 | mpbird 166 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 # 0) → 𝐴 = 0) |
28 | 27 | ex 114 | . . . 4 ⊢ (𝜑 → (𝐵 # 0 → 𝐴 = 0)) |
29 | 19, 28 | orim12d 781 | . . 3 ⊢ (𝜑 → ((𝐴 # 0 ∨ 𝐵 # 0) → (𝐵 = 0 ∨ 𝐴 = 0))) |
30 | 7, 29 | mpd 13 | . 2 ⊢ (𝜑 → (𝐵 = 0 ∨ 𝐴 = 0)) |
31 | 30 | orcomd 724 | 1 ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 703 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℂcc 7772 0cc0 7774 · cmul 7779 # cap 8500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |