| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul0eqap | GIF version | ||
| Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| mul0eqap.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| mul0eqap.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| mul0eqap.ab | ⊢ (𝜑 → 𝐴 # 𝐵) |
| mul0eqap.0 | ⊢ (𝜑 → (𝐴 · 𝐵) = 0) |
| Ref | Expression |
|---|---|
| mul0eqap | ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul0eqap.ab | . . . 4 ⊢ (𝜑 → 𝐴 # 𝐵) | |
| 2 | mul0eqap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | mul0eqap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 0cnd 8064 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 5 | apcotr 8679 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0))) | |
| 6 | 2, 3, 4, 5 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0))) |
| 7 | 1, 6 | mpd 13 | . . 3 ⊢ (𝜑 → (𝐴 # 0 ∨ 𝐵 # 0)) |
| 8 | mul0eqap.0 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · 𝐵) = 0) | |
| 9 | 8 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐴 · 𝐵) = 0) |
| 10 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → 𝐵 ∈ ℂ) |
| 11 | 0cnd 8064 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → 0 ∈ ℂ) | |
| 12 | 2, 3 | mulcld 8092 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) |
| 13 | 12 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐴 · 𝐵) ∈ ℂ) |
| 14 | ibar 301 | . . . . . . . 8 ⊢ (𝐴 # 0 → (𝐵 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0))) | |
| 15 | 2, 3 | mulap0bd 8729 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) |
| 16 | 14, 15 | sylan9bbr 463 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐵 # 0 ↔ (𝐴 · 𝐵) # 0)) |
| 17 | 10, 11, 13, 11, 16 | apcon4bid 8696 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐵 = 0 ↔ (𝐴 · 𝐵) = 0)) |
| 18 | 9, 17 | mpbird 167 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 # 0) → 𝐵 = 0) |
| 19 | 18 | ex 115 | . . . 4 ⊢ (𝜑 → (𝐴 # 0 → 𝐵 = 0)) |
| 20 | 8 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 · 𝐵) = 0) |
| 21 | 2 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → 𝐴 ∈ ℂ) |
| 22 | 0cnd 8064 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → 0 ∈ ℂ) | |
| 23 | 12 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 · 𝐵) ∈ ℂ) |
| 24 | iba 300 | . . . . . . . 8 ⊢ (𝐵 # 0 → (𝐴 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0))) | |
| 25 | 24, 15 | sylan9bbr 463 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 # 0 ↔ (𝐴 · 𝐵) # 0)) |
| 26 | 21, 22, 23, 22, 25 | apcon4bid 8696 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 = 0 ↔ (𝐴 · 𝐵) = 0)) |
| 27 | 20, 26 | mpbird 167 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 # 0) → 𝐴 = 0) |
| 28 | 27 | ex 115 | . . . 4 ⊢ (𝜑 → (𝐵 # 0 → 𝐴 = 0)) |
| 29 | 19, 28 | orim12d 787 | . . 3 ⊢ (𝜑 → ((𝐴 # 0 ∨ 𝐵 # 0) → (𝐵 = 0 ∨ 𝐴 = 0))) |
| 30 | 7, 29 | mpd 13 | . 2 ⊢ (𝜑 → (𝐵 = 0 ∨ 𝐴 = 0)) |
| 31 | 30 | orcomd 730 | 1 ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5943 ℂcc 7922 0cc0 7924 · cmul 7929 # cap 8653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |