ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul0eqap GIF version

Theorem mul0eqap 8431
Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
Hypotheses
Ref Expression
mul0eqap.a (𝜑𝐴 ∈ ℂ)
mul0eqap.b (𝜑𝐵 ∈ ℂ)
mul0eqap.ab (𝜑𝐴 # 𝐵)
mul0eqap.0 (𝜑 → (𝐴 · 𝐵) = 0)
Assertion
Ref Expression
mul0eqap (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0))

Proof of Theorem mul0eqap
StepHypRef Expression
1 mul0eqap.ab . . . 4 (𝜑𝐴 # 𝐵)
2 mul0eqap.a . . . . 5 (𝜑𝐴 ∈ ℂ)
3 mul0eqap.b . . . . 5 (𝜑𝐵 ∈ ℂ)
4 0cnd 7759 . . . . 5 (𝜑 → 0 ∈ ℂ)
5 apcotr 8369 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0)))
62, 3, 4, 5syl3anc 1216 . . . 4 (𝜑 → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0)))
71, 6mpd 13 . . 3 (𝜑 → (𝐴 # 0 ∨ 𝐵 # 0))
8 mul0eqap.0 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = 0)
98adantr 274 . . . . . 6 ((𝜑𝐴 # 0) → (𝐴 · 𝐵) = 0)
103adantr 274 . . . . . . 7 ((𝜑𝐴 # 0) → 𝐵 ∈ ℂ)
11 0cnd 7759 . . . . . . 7 ((𝜑𝐴 # 0) → 0 ∈ ℂ)
122, 3mulcld 7786 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
1312adantr 274 . . . . . . 7 ((𝜑𝐴 # 0) → (𝐴 · 𝐵) ∈ ℂ)
14 ibar 299 . . . . . . . 8 (𝐴 # 0 → (𝐵 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0)))
152, 3mulap0bd 8418 . . . . . . . 8 (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0))
1614, 15sylan9bbr 458 . . . . . . 7 ((𝜑𝐴 # 0) → (𝐵 # 0 ↔ (𝐴 · 𝐵) # 0))
1710, 11, 13, 11, 16apcon4bid 8386 . . . . . 6 ((𝜑𝐴 # 0) → (𝐵 = 0 ↔ (𝐴 · 𝐵) = 0))
189, 17mpbird 166 . . . . 5 ((𝜑𝐴 # 0) → 𝐵 = 0)
1918ex 114 . . . 4 (𝜑 → (𝐴 # 0 → 𝐵 = 0))
208adantr 274 . . . . . 6 ((𝜑𝐵 # 0) → (𝐴 · 𝐵) = 0)
212adantr 274 . . . . . . 7 ((𝜑𝐵 # 0) → 𝐴 ∈ ℂ)
22 0cnd 7759 . . . . . . 7 ((𝜑𝐵 # 0) → 0 ∈ ℂ)
2312adantr 274 . . . . . . 7 ((𝜑𝐵 # 0) → (𝐴 · 𝐵) ∈ ℂ)
24 iba 298 . . . . . . . 8 (𝐵 # 0 → (𝐴 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0)))
2524, 15sylan9bbr 458 . . . . . . 7 ((𝜑𝐵 # 0) → (𝐴 # 0 ↔ (𝐴 · 𝐵) # 0))
2621, 22, 23, 22, 25apcon4bid 8386 . . . . . 6 ((𝜑𝐵 # 0) → (𝐴 = 0 ↔ (𝐴 · 𝐵) = 0))
2720, 26mpbird 166 . . . . 5 ((𝜑𝐵 # 0) → 𝐴 = 0)
2827ex 114 . . . 4 (𝜑 → (𝐵 # 0 → 𝐴 = 0))
2919, 28orim12d 775 . . 3 (𝜑 → ((𝐴 # 0 ∨ 𝐵 # 0) → (𝐵 = 0 ∨ 𝐴 = 0)))
307, 29mpd 13 . 2 (𝜑 → (𝐵 = 0 ∨ 𝐴 = 0))
3130orcomd 718 1 (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 697   = wceq 1331  wcel 1480   class class class wbr 3929  (class class class)co 5774  cc 7618  0cc0 7620   · cmul 7625   # cap 8343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator