Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mul0eqap | GIF version |
Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.) |
Ref | Expression |
---|---|
mul0eqap.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mul0eqap.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mul0eqap.ab | ⊢ (𝜑 → 𝐴 # 𝐵) |
mul0eqap.0 | ⊢ (𝜑 → (𝐴 · 𝐵) = 0) |
Ref | Expression |
---|---|
mul0eqap | ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul0eqap.ab | . . . 4 ⊢ (𝜑 → 𝐴 # 𝐵) | |
2 | mul0eqap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | mul0eqap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 0cnd 7892 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℂ) | |
5 | apcotr 8505 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0))) | |
6 | 2, 3, 4, 5 | syl3anc 1228 | . . . 4 ⊢ (𝜑 → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0))) |
7 | 1, 6 | mpd 13 | . . 3 ⊢ (𝜑 → (𝐴 # 0 ∨ 𝐵 # 0)) |
8 | mul0eqap.0 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · 𝐵) = 0) | |
9 | 8 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐴 · 𝐵) = 0) |
10 | 3 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → 𝐵 ∈ ℂ) |
11 | 0cnd 7892 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → 0 ∈ ℂ) | |
12 | 2, 3 | mulcld 7919 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) |
13 | 12 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐴 · 𝐵) ∈ ℂ) |
14 | ibar 299 | . . . . . . . 8 ⊢ (𝐴 # 0 → (𝐵 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0))) | |
15 | 2, 3 | mulap0bd 8554 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) |
16 | 14, 15 | sylan9bbr 459 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐵 # 0 ↔ (𝐴 · 𝐵) # 0)) |
17 | 10, 11, 13, 11, 16 | apcon4bid 8522 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐵 = 0 ↔ (𝐴 · 𝐵) = 0)) |
18 | 9, 17 | mpbird 166 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 # 0) → 𝐵 = 0) |
19 | 18 | ex 114 | . . . 4 ⊢ (𝜑 → (𝐴 # 0 → 𝐵 = 0)) |
20 | 8 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 · 𝐵) = 0) |
21 | 2 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → 𝐴 ∈ ℂ) |
22 | 0cnd 7892 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → 0 ∈ ℂ) | |
23 | 12 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 · 𝐵) ∈ ℂ) |
24 | iba 298 | . . . . . . . 8 ⊢ (𝐵 # 0 → (𝐴 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0))) | |
25 | 24, 15 | sylan9bbr 459 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 # 0 ↔ (𝐴 · 𝐵) # 0)) |
26 | 21, 22, 23, 22, 25 | apcon4bid 8522 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 = 0 ↔ (𝐴 · 𝐵) = 0)) |
27 | 20, 26 | mpbird 166 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 # 0) → 𝐴 = 0) |
28 | 27 | ex 114 | . . . 4 ⊢ (𝜑 → (𝐵 # 0 → 𝐴 = 0)) |
29 | 19, 28 | orim12d 776 | . . 3 ⊢ (𝜑 → ((𝐴 # 0 ∨ 𝐵 # 0) → (𝐵 = 0 ∨ 𝐴 = 0))) |
30 | 7, 29 | mpd 13 | . 2 ⊢ (𝜑 → (𝐵 = 0 ∨ 𝐴 = 0)) |
31 | 30 | orcomd 719 | 1 ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ℂcc 7751 0cc0 7753 · cmul 7758 # cap 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |