| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul0eqap | GIF version | ||
| Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| mul0eqap.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| mul0eqap.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| mul0eqap.ab | ⊢ (𝜑 → 𝐴 # 𝐵) |
| mul0eqap.0 | ⊢ (𝜑 → (𝐴 · 𝐵) = 0) |
| Ref | Expression |
|---|---|
| mul0eqap | ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul0eqap.ab | . . . 4 ⊢ (𝜑 → 𝐴 # 𝐵) | |
| 2 | mul0eqap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | mul0eqap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 0cnd 8135 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 5 | apcotr 8750 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0))) | |
| 6 | 2, 3, 4, 5 | syl3anc 1271 | . . . 4 ⊢ (𝜑 → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0))) |
| 7 | 1, 6 | mpd 13 | . . 3 ⊢ (𝜑 → (𝐴 # 0 ∨ 𝐵 # 0)) |
| 8 | mul0eqap.0 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · 𝐵) = 0) | |
| 9 | 8 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐴 · 𝐵) = 0) |
| 10 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → 𝐵 ∈ ℂ) |
| 11 | 0cnd 8135 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → 0 ∈ ℂ) | |
| 12 | 2, 3 | mulcld 8163 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) |
| 13 | 12 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐴 · 𝐵) ∈ ℂ) |
| 14 | ibar 301 | . . . . . . . 8 ⊢ (𝐴 # 0 → (𝐵 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0))) | |
| 15 | 2, 3 | mulap0bd 8800 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) |
| 16 | 14, 15 | sylan9bbr 463 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐵 # 0 ↔ (𝐴 · 𝐵) # 0)) |
| 17 | 10, 11, 13, 11, 16 | apcon4bid 8767 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐵 = 0 ↔ (𝐴 · 𝐵) = 0)) |
| 18 | 9, 17 | mpbird 167 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 # 0) → 𝐵 = 0) |
| 19 | 18 | ex 115 | . . . 4 ⊢ (𝜑 → (𝐴 # 0 → 𝐵 = 0)) |
| 20 | 8 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 · 𝐵) = 0) |
| 21 | 2 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → 𝐴 ∈ ℂ) |
| 22 | 0cnd 8135 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → 0 ∈ ℂ) | |
| 23 | 12 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 · 𝐵) ∈ ℂ) |
| 24 | iba 300 | . . . . . . . 8 ⊢ (𝐵 # 0 → (𝐴 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0))) | |
| 25 | 24, 15 | sylan9bbr 463 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 # 0 ↔ (𝐴 · 𝐵) # 0)) |
| 26 | 21, 22, 23, 22, 25 | apcon4bid 8767 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 = 0 ↔ (𝐴 · 𝐵) = 0)) |
| 27 | 20, 26 | mpbird 167 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 # 0) → 𝐴 = 0) |
| 28 | 27 | ex 115 | . . . 4 ⊢ (𝜑 → (𝐵 # 0 → 𝐴 = 0)) |
| 29 | 19, 28 | orim12d 791 | . . 3 ⊢ (𝜑 → ((𝐴 # 0 ∨ 𝐵 # 0) → (𝐵 = 0 ∨ 𝐴 = 0))) |
| 30 | 7, 29 | mpd 13 | . 2 ⊢ (𝜑 → (𝐵 = 0 ∨ 𝐴 = 0)) |
| 31 | 30 | orcomd 734 | 1 ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ℂcc 7993 0cc0 7995 · cmul 8000 # cap 8724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |