| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul0eqap | GIF version | ||
| Description: If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| mul0eqap.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| mul0eqap.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| mul0eqap.ab | ⊢ (𝜑 → 𝐴 # 𝐵) |
| mul0eqap.0 | ⊢ (𝜑 → (𝐴 · 𝐵) = 0) |
| Ref | Expression |
|---|---|
| mul0eqap | ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul0eqap.ab | . . . 4 ⊢ (𝜑 → 𝐴 # 𝐵) | |
| 2 | mul0eqap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | mul0eqap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 0cnd 8100 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 5 | apcotr 8715 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0))) | |
| 6 | 2, 3, 4, 5 | syl3anc 1250 | . . . 4 ⊢ (𝜑 → (𝐴 # 𝐵 → (𝐴 # 0 ∨ 𝐵 # 0))) |
| 7 | 1, 6 | mpd 13 | . . 3 ⊢ (𝜑 → (𝐴 # 0 ∨ 𝐵 # 0)) |
| 8 | mul0eqap.0 | . . . . . . 7 ⊢ (𝜑 → (𝐴 · 𝐵) = 0) | |
| 9 | 8 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐴 · 𝐵) = 0) |
| 10 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → 𝐵 ∈ ℂ) |
| 11 | 0cnd 8100 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → 0 ∈ ℂ) | |
| 12 | 2, 3 | mulcld 8128 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) |
| 13 | 12 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐴 · 𝐵) ∈ ℂ) |
| 14 | ibar 301 | . . . . . . . 8 ⊢ (𝐴 # 0 → (𝐵 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0))) | |
| 15 | 2, 3 | mulap0bd 8765 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) |
| 16 | 14, 15 | sylan9bbr 463 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐵 # 0 ↔ (𝐴 · 𝐵) # 0)) |
| 17 | 10, 11, 13, 11, 16 | apcon4bid 8732 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 # 0) → (𝐵 = 0 ↔ (𝐴 · 𝐵) = 0)) |
| 18 | 9, 17 | mpbird 167 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 # 0) → 𝐵 = 0) |
| 19 | 18 | ex 115 | . . . 4 ⊢ (𝜑 → (𝐴 # 0 → 𝐵 = 0)) |
| 20 | 8 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 · 𝐵) = 0) |
| 21 | 2 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → 𝐴 ∈ ℂ) |
| 22 | 0cnd 8100 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → 0 ∈ ℂ) | |
| 23 | 12 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 · 𝐵) ∈ ℂ) |
| 24 | iba 300 | . . . . . . . 8 ⊢ (𝐵 # 0 → (𝐴 # 0 ↔ (𝐴 # 0 ∧ 𝐵 # 0))) | |
| 25 | 24, 15 | sylan9bbr 463 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 # 0 ↔ (𝐴 · 𝐵) # 0)) |
| 26 | 21, 22, 23, 22, 25 | apcon4bid 8732 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 # 0) → (𝐴 = 0 ↔ (𝐴 · 𝐵) = 0)) |
| 27 | 20, 26 | mpbird 167 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 # 0) → 𝐴 = 0) |
| 28 | 27 | ex 115 | . . . 4 ⊢ (𝜑 → (𝐵 # 0 → 𝐴 = 0)) |
| 29 | 19, 28 | orim12d 788 | . . 3 ⊢ (𝜑 → ((𝐴 # 0 ∨ 𝐵 # 0) → (𝐵 = 0 ∨ 𝐴 = 0))) |
| 30 | 7, 29 | mpd 13 | . 2 ⊢ (𝜑 → (𝐵 = 0 ∨ 𝐴 = 0)) |
| 31 | 30 | orcomd 731 | 1 ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 (class class class)co 5967 ℂcc 7958 0cc0 7960 · cmul 7965 # cap 8689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |