ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiexmid GIF version

Theorem unfiexmid 6883
Description: If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.)
Hypothesis
Ref Expression
unfiexmid.1 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
Assertion
Ref Expression
unfiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem unfiexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-pr 3583 . . . . 5 {{𝑧 ∈ 1o𝜑}, 1o} = ({{𝑧 ∈ 1o𝜑}} ∪ {1o})
2 unfiexmid.1 . . . . . . 7 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
32rgen2a 2520 . . . . . 6 𝑥 ∈ Fin ∀𝑦 ∈ Fin (𝑥𝑦) ∈ Fin
4 df1o2 6397 . . . . . . . . . 10 1o = {∅}
5 rabeq 2718 . . . . . . . . . 10 (1o = {∅} → {𝑧 ∈ 1o𝜑} = {𝑧 ∈ {∅} ∣ 𝜑})
64, 5ax-mp 5 . . . . . . . . 9 {𝑧 ∈ 1o𝜑} = {𝑧 ∈ {∅} ∣ 𝜑}
7 ordtriexmidlem 4496 . . . . . . . . 9 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
86, 7eqeltri 2239 . . . . . . . 8 {𝑧 ∈ 1o𝜑} ∈ On
9 snfig 6780 . . . . . . . 8 ({𝑧 ∈ 1o𝜑} ∈ On → {{𝑧 ∈ 1o𝜑}} ∈ Fin)
108, 9ax-mp 5 . . . . . . 7 {{𝑧 ∈ 1o𝜑}} ∈ Fin
11 1onn 6488 . . . . . . . 8 1o ∈ ω
12 snfig 6780 . . . . . . . 8 (1o ∈ ω → {1o} ∈ Fin)
1311, 12ax-mp 5 . . . . . . 7 {1o} ∈ Fin
14 uneq1 3269 . . . . . . . . 9 (𝑥 = {{𝑧 ∈ 1o𝜑}} → (𝑥𝑦) = ({{𝑧 ∈ 1o𝜑}} ∪ 𝑦))
1514eleq1d 2235 . . . . . . . 8 (𝑥 = {{𝑧 ∈ 1o𝜑}} → ((𝑥𝑦) ∈ Fin ↔ ({{𝑧 ∈ 1o𝜑}} ∪ 𝑦) ∈ Fin))
16 uneq2 3270 . . . . . . . . 9 (𝑦 = {1o} → ({{𝑧 ∈ 1o𝜑}} ∪ 𝑦) = ({{𝑧 ∈ 1o𝜑}} ∪ {1o}))
1716eleq1d 2235 . . . . . . . 8 (𝑦 = {1o} → (({{𝑧 ∈ 1o𝜑}} ∪ 𝑦) ∈ Fin ↔ ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin))
1815, 17rspc2v 2843 . . . . . . 7 (({{𝑧 ∈ 1o𝜑}} ∈ Fin ∧ {1o} ∈ Fin) → (∀𝑥 ∈ Fin ∀𝑦 ∈ Fin (𝑥𝑦) ∈ Fin → ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin))
1910, 13, 18mp2an 423 . . . . . 6 (∀𝑥 ∈ Fin ∀𝑦 ∈ Fin (𝑥𝑦) ∈ Fin → ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin)
203, 19ax-mp 5 . . . . 5 ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin
211, 20eqeltri 2239 . . . 4 {{𝑧 ∈ 1o𝜑}, 1o} ∈ Fin
228elexi 2738 . . . . 5 {𝑧 ∈ 1o𝜑} ∈ V
2322prid1 3682 . . . 4 {𝑧 ∈ 1o𝜑} ∈ {{𝑧 ∈ 1o𝜑}, 1o}
2411elexi 2738 . . . . 5 1o ∈ V
2524prid2 3683 . . . 4 1o ∈ {{𝑧 ∈ 1o𝜑}, 1o}
26 fidceq 6835 . . . 4 (({{𝑧 ∈ 1o𝜑}, 1o} ∈ Fin ∧ {𝑧 ∈ 1o𝜑} ∈ {{𝑧 ∈ 1o𝜑}, 1o} ∧ 1o ∈ {{𝑧 ∈ 1o𝜑}, 1o}) → DECID {𝑧 ∈ 1o𝜑} = 1o)
2721, 23, 25, 26mp3an 1327 . . 3 DECID {𝑧 ∈ 1o𝜑} = 1o
28 exmiddc 826 . . 3 (DECID {𝑧 ∈ 1o𝜑} = 1o → ({𝑧 ∈ 1o𝜑} = 1o ∨ ¬ {𝑧 ∈ 1o𝜑} = 1o))
2927, 28ax-mp 5 . 2 ({𝑧 ∈ 1o𝜑} = 1o ∨ ¬ {𝑧 ∈ 1o𝜑} = 1o)
304eqeq2i 2176 . . . 4 ({𝑧 ∈ 1o𝜑} = 1o ↔ {𝑧 ∈ 1o𝜑} = {∅})
31 0ex 4109 . . . . 5 ∅ ∈ V
32 biidd 171 . . . . 5 (𝑧 = ∅ → (𝜑𝜑))
3331, 32rabsnt 3651 . . . 4 ({𝑧 ∈ 1o𝜑} = {∅} → 𝜑)
3430, 33sylbi 120 . . 3 ({𝑧 ∈ 1o𝜑} = 1o𝜑)
35 df-rab 2453 . . . . 5 {𝑧 ∈ 1o𝜑} = {𝑧 ∣ (𝑧 ∈ 1o𝜑)}
36 iba 298 . . . . . 6 (𝜑 → (𝑧 ∈ 1o ↔ (𝑧 ∈ 1o𝜑)))
3736abbi2dv 2285 . . . . 5 (𝜑 → 1o = {𝑧 ∣ (𝑧 ∈ 1o𝜑)})
3835, 37eqtr4id 2218 . . . 4 (𝜑 → {𝑧 ∈ 1o𝜑} = 1o)
3938con3i 622 . . 3 (¬ {𝑧 ∈ 1o𝜑} = 1o → ¬ 𝜑)
4034, 39orim12i 749 . 2 (({𝑧 ∈ 1o𝜑} = 1o ∨ ¬ {𝑧 ∈ 1o𝜑} = 1o) → (𝜑 ∨ ¬ 𝜑))
4129, 40ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  {cab 2151  wral 2444  {crab 2448  cun 3114  c0 3409  {csn 3576  {cpr 3577  Oncon0 4341  ωcom 4567  1oc1o 6377  Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-en 6707  df-fin 6709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator