ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiexmid GIF version

Theorem unfiexmid 6979
Description: If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.)
Hypothesis
Ref Expression
unfiexmid.1 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
Assertion
Ref Expression
unfiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem unfiexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-pr 3629 . . . . 5 {{𝑧 ∈ 1o𝜑}, 1o} = ({{𝑧 ∈ 1o𝜑}} ∪ {1o})
2 unfiexmid.1 . . . . . . 7 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
32rgen2a 2551 . . . . . 6 𝑥 ∈ Fin ∀𝑦 ∈ Fin (𝑥𝑦) ∈ Fin
4 df1o2 6487 . . . . . . . . . 10 1o = {∅}
5 rabeq 2755 . . . . . . . . . 10 (1o = {∅} → {𝑧 ∈ 1o𝜑} = {𝑧 ∈ {∅} ∣ 𝜑})
64, 5ax-mp 5 . . . . . . . . 9 {𝑧 ∈ 1o𝜑} = {𝑧 ∈ {∅} ∣ 𝜑}
7 ordtriexmidlem 4555 . . . . . . . . 9 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
86, 7eqeltri 2269 . . . . . . . 8 {𝑧 ∈ 1o𝜑} ∈ On
9 snfig 6873 . . . . . . . 8 ({𝑧 ∈ 1o𝜑} ∈ On → {{𝑧 ∈ 1o𝜑}} ∈ Fin)
108, 9ax-mp 5 . . . . . . 7 {{𝑧 ∈ 1o𝜑}} ∈ Fin
11 1onn 6578 . . . . . . . 8 1o ∈ ω
12 snfig 6873 . . . . . . . 8 (1o ∈ ω → {1o} ∈ Fin)
1311, 12ax-mp 5 . . . . . . 7 {1o} ∈ Fin
14 uneq1 3310 . . . . . . . . 9 (𝑥 = {{𝑧 ∈ 1o𝜑}} → (𝑥𝑦) = ({{𝑧 ∈ 1o𝜑}} ∪ 𝑦))
1514eleq1d 2265 . . . . . . . 8 (𝑥 = {{𝑧 ∈ 1o𝜑}} → ((𝑥𝑦) ∈ Fin ↔ ({{𝑧 ∈ 1o𝜑}} ∪ 𝑦) ∈ Fin))
16 uneq2 3311 . . . . . . . . 9 (𝑦 = {1o} → ({{𝑧 ∈ 1o𝜑}} ∪ 𝑦) = ({{𝑧 ∈ 1o𝜑}} ∪ {1o}))
1716eleq1d 2265 . . . . . . . 8 (𝑦 = {1o} → (({{𝑧 ∈ 1o𝜑}} ∪ 𝑦) ∈ Fin ↔ ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin))
1815, 17rspc2v 2881 . . . . . . 7 (({{𝑧 ∈ 1o𝜑}} ∈ Fin ∧ {1o} ∈ Fin) → (∀𝑥 ∈ Fin ∀𝑦 ∈ Fin (𝑥𝑦) ∈ Fin → ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin))
1910, 13, 18mp2an 426 . . . . . 6 (∀𝑥 ∈ Fin ∀𝑦 ∈ Fin (𝑥𝑦) ∈ Fin → ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin)
203, 19ax-mp 5 . . . . 5 ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin
211, 20eqeltri 2269 . . . 4 {{𝑧 ∈ 1o𝜑}, 1o} ∈ Fin
228elexi 2775 . . . . 5 {𝑧 ∈ 1o𝜑} ∈ V
2322prid1 3728 . . . 4 {𝑧 ∈ 1o𝜑} ∈ {{𝑧 ∈ 1o𝜑}, 1o}
2411elexi 2775 . . . . 5 1o ∈ V
2524prid2 3729 . . . 4 1o ∈ {{𝑧 ∈ 1o𝜑}, 1o}
26 fidceq 6930 . . . 4 (({{𝑧 ∈ 1o𝜑}, 1o} ∈ Fin ∧ {𝑧 ∈ 1o𝜑} ∈ {{𝑧 ∈ 1o𝜑}, 1o} ∧ 1o ∈ {{𝑧 ∈ 1o𝜑}, 1o}) → DECID {𝑧 ∈ 1o𝜑} = 1o)
2721, 23, 25, 26mp3an 1348 . . 3 DECID {𝑧 ∈ 1o𝜑} = 1o
28 exmiddc 837 . . 3 (DECID {𝑧 ∈ 1o𝜑} = 1o → ({𝑧 ∈ 1o𝜑} = 1o ∨ ¬ {𝑧 ∈ 1o𝜑} = 1o))
2927, 28ax-mp 5 . 2 ({𝑧 ∈ 1o𝜑} = 1o ∨ ¬ {𝑧 ∈ 1o𝜑} = 1o)
304eqeq2i 2207 . . . 4 ({𝑧 ∈ 1o𝜑} = 1o ↔ {𝑧 ∈ 1o𝜑} = {∅})
31 0ex 4160 . . . . 5 ∅ ∈ V
32 biidd 172 . . . . 5 (𝑧 = ∅ → (𝜑𝜑))
3331, 32rabsnt 3697 . . . 4 ({𝑧 ∈ 1o𝜑} = {∅} → 𝜑)
3430, 33sylbi 121 . . 3 ({𝑧 ∈ 1o𝜑} = 1o𝜑)
35 df-rab 2484 . . . . 5 {𝑧 ∈ 1o𝜑} = {𝑧 ∣ (𝑧 ∈ 1o𝜑)}
36 iba 300 . . . . . 6 (𝜑 → (𝑧 ∈ 1o ↔ (𝑧 ∈ 1o𝜑)))
3736abbi2dv 2315 . . . . 5 (𝜑 → 1o = {𝑧 ∣ (𝑧 ∈ 1o𝜑)})
3835, 37eqtr4id 2248 . . . 4 (𝜑 → {𝑧 ∈ 1o𝜑} = 1o)
3938con3i 633 . . 3 (¬ {𝑧 ∈ 1o𝜑} = 1o → ¬ 𝜑)
4034, 39orim12i 760 . 2 (({𝑧 ∈ 1o𝜑} = 1o ∨ ¬ {𝑧 ∈ 1o𝜑} = 1o) → (𝜑 ∨ ¬ 𝜑))
4129, 40ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  {cab 2182  wral 2475  {crab 2479  cun 3155  c0 3450  {csn 3622  {cpr 3623  Oncon0 4398  ωcom 4626  1oc1o 6467  Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-en 6800  df-fin 6802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator