ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiexmid GIF version

Theorem unfiexmid 7076
Description: If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.)
Hypothesis
Ref Expression
unfiexmid.1 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
Assertion
Ref Expression
unfiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem unfiexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-pr 3673 . . . . 5 {{𝑧 ∈ 1o𝜑}, 1o} = ({{𝑧 ∈ 1o𝜑}} ∪ {1o})
2 unfiexmid.1 . . . . . . 7 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
32rgen2a 2584 . . . . . 6 𝑥 ∈ Fin ∀𝑦 ∈ Fin (𝑥𝑦) ∈ Fin
4 df1o2 6573 . . . . . . . . . 10 1o = {∅}
5 rabeq 2791 . . . . . . . . . 10 (1o = {∅} → {𝑧 ∈ 1o𝜑} = {𝑧 ∈ {∅} ∣ 𝜑})
64, 5ax-mp 5 . . . . . . . . 9 {𝑧 ∈ 1o𝜑} = {𝑧 ∈ {∅} ∣ 𝜑}
7 ordtriexmidlem 4610 . . . . . . . . 9 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
86, 7eqeltri 2302 . . . . . . . 8 {𝑧 ∈ 1o𝜑} ∈ On
9 snfig 6965 . . . . . . . 8 ({𝑧 ∈ 1o𝜑} ∈ On → {{𝑧 ∈ 1o𝜑}} ∈ Fin)
108, 9ax-mp 5 . . . . . . 7 {{𝑧 ∈ 1o𝜑}} ∈ Fin
11 1onn 6664 . . . . . . . 8 1o ∈ ω
12 snfig 6965 . . . . . . . 8 (1o ∈ ω → {1o} ∈ Fin)
1311, 12ax-mp 5 . . . . . . 7 {1o} ∈ Fin
14 uneq1 3351 . . . . . . . . 9 (𝑥 = {{𝑧 ∈ 1o𝜑}} → (𝑥𝑦) = ({{𝑧 ∈ 1o𝜑}} ∪ 𝑦))
1514eleq1d 2298 . . . . . . . 8 (𝑥 = {{𝑧 ∈ 1o𝜑}} → ((𝑥𝑦) ∈ Fin ↔ ({{𝑧 ∈ 1o𝜑}} ∪ 𝑦) ∈ Fin))
16 uneq2 3352 . . . . . . . . 9 (𝑦 = {1o} → ({{𝑧 ∈ 1o𝜑}} ∪ 𝑦) = ({{𝑧 ∈ 1o𝜑}} ∪ {1o}))
1716eleq1d 2298 . . . . . . . 8 (𝑦 = {1o} → (({{𝑧 ∈ 1o𝜑}} ∪ 𝑦) ∈ Fin ↔ ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin))
1815, 17rspc2v 2920 . . . . . . 7 (({{𝑧 ∈ 1o𝜑}} ∈ Fin ∧ {1o} ∈ Fin) → (∀𝑥 ∈ Fin ∀𝑦 ∈ Fin (𝑥𝑦) ∈ Fin → ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin))
1910, 13, 18mp2an 426 . . . . . 6 (∀𝑥 ∈ Fin ∀𝑦 ∈ Fin (𝑥𝑦) ∈ Fin → ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin)
203, 19ax-mp 5 . . . . 5 ({{𝑧 ∈ 1o𝜑}} ∪ {1o}) ∈ Fin
211, 20eqeltri 2302 . . . 4 {{𝑧 ∈ 1o𝜑}, 1o} ∈ Fin
228elexi 2812 . . . . 5 {𝑧 ∈ 1o𝜑} ∈ V
2322prid1 3772 . . . 4 {𝑧 ∈ 1o𝜑} ∈ {{𝑧 ∈ 1o𝜑}, 1o}
2411elexi 2812 . . . . 5 1o ∈ V
2524prid2 3773 . . . 4 1o ∈ {{𝑧 ∈ 1o𝜑}, 1o}
26 fidceq 7027 . . . 4 (({{𝑧 ∈ 1o𝜑}, 1o} ∈ Fin ∧ {𝑧 ∈ 1o𝜑} ∈ {{𝑧 ∈ 1o𝜑}, 1o} ∧ 1o ∈ {{𝑧 ∈ 1o𝜑}, 1o}) → DECID {𝑧 ∈ 1o𝜑} = 1o)
2721, 23, 25, 26mp3an 1371 . . 3 DECID {𝑧 ∈ 1o𝜑} = 1o
28 exmiddc 841 . . 3 (DECID {𝑧 ∈ 1o𝜑} = 1o → ({𝑧 ∈ 1o𝜑} = 1o ∨ ¬ {𝑧 ∈ 1o𝜑} = 1o))
2927, 28ax-mp 5 . 2 ({𝑧 ∈ 1o𝜑} = 1o ∨ ¬ {𝑧 ∈ 1o𝜑} = 1o)
304eqeq2i 2240 . . . 4 ({𝑧 ∈ 1o𝜑} = 1o ↔ {𝑧 ∈ 1o𝜑} = {∅})
31 0ex 4210 . . . . 5 ∅ ∈ V
32 biidd 172 . . . . 5 (𝑧 = ∅ → (𝜑𝜑))
3331, 32rabsnt 3741 . . . 4 ({𝑧 ∈ 1o𝜑} = {∅} → 𝜑)
3430, 33sylbi 121 . . 3 ({𝑧 ∈ 1o𝜑} = 1o𝜑)
35 df-rab 2517 . . . . 5 {𝑧 ∈ 1o𝜑} = {𝑧 ∣ (𝑧 ∈ 1o𝜑)}
36 iba 300 . . . . . 6 (𝜑 → (𝑧 ∈ 1o ↔ (𝑧 ∈ 1o𝜑)))
3736abbi2dv 2348 . . . . 5 (𝜑 → 1o = {𝑧 ∣ (𝑧 ∈ 1o𝜑)})
3835, 37eqtr4id 2281 . . . 4 (𝜑 → {𝑧 ∈ 1o𝜑} = 1o)
3938con3i 635 . . 3 (¬ {𝑧 ∈ 1o𝜑} = 1o → ¬ 𝜑)
4034, 39orim12i 764 . 2 (({𝑧 ∈ 1o𝜑} = 1o ∨ ¬ {𝑧 ∈ 1o𝜑} = 1o) → (𝜑 ∨ ¬ 𝜑))
4129, 40ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  {cab 2215  wral 2508  {crab 2512  cun 3195  c0 3491  {csn 3666  {cpr 3667  Oncon0 4453  ωcom 4681  1oc1o 6553  Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-en 6886  df-fin 6888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator