ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmpig GIF version

Theorem ltmpig 6799
Description: Ordering property of multiplication for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
ltmpig ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))

Proof of Theorem ltmpig
StepHypRef Expression
1 pinn 6769 . . . . 5 (𝐴N𝐴 ∈ ω)
2 pinn 6769 . . . . 5 (𝐵N𝐵 ∈ ω)
3 elni2 6774 . . . . . 6 (𝐶N ↔ (𝐶 ∈ ω ∧ ∅ ∈ 𝐶))
4 iba 294 . . . . . . . . 9 (∅ ∈ 𝐶 → (𝐴𝐵 ↔ (𝐴𝐵 ∧ ∅ ∈ 𝐶)))
5 nnmord 6204 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
64, 5sylan9bbr 451 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
763exp1 1155 . . . . . . 7 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))))
87imp4b 342 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐶 ∈ ω ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
93, 8syl5bi 150 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶N → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
101, 2, 9syl2an 283 . . . 4 ((𝐴N𝐵N) → (𝐶N → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
1110imp 122 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
12 ltpiord 6779 . . . 4 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
1312adantr 270 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵𝐴𝐵))
14 mulclpi 6788 . . . . . . 7 ((𝐶N𝐴N) → (𝐶 ·N 𝐴) ∈ N)
15 mulclpi 6788 . . . . . . 7 ((𝐶N𝐵N) → (𝐶 ·N 𝐵) ∈ N)
16 ltpiord 6779 . . . . . . 7 (((𝐶 ·N 𝐴) ∈ N ∧ (𝐶 ·N 𝐵) ∈ N) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵)))
1714, 15, 16syl2an 283 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵)))
18 mulpiord 6777 . . . . . . . 8 ((𝐶N𝐴N) → (𝐶 ·N 𝐴) = (𝐶 ·𝑜 𝐴))
1918adantr 270 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 ·N 𝐴) = (𝐶 ·𝑜 𝐴))
20 mulpiord 6777 . . . . . . . 8 ((𝐶N𝐵N) → (𝐶 ·N 𝐵) = (𝐶 ·𝑜 𝐵))
2120adantl 271 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 ·N 𝐵) = (𝐶 ·𝑜 𝐵))
2219, 21eleq12d 2153 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
2317, 22bitrd 186 . . . . 5 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
2423anandis 557 . . . 4 ((𝐶N ∧ (𝐴N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
2524ancoms 264 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
2611, 13, 253bitr4d 218 . 2 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
27263impa 1134 1 ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  c0 3269   class class class wbr 3811  ωcom 4367  (class class class)co 5589   ·𝑜 comu 6109  Ncnpi 6732   ·N cmi 6734   <N clti 6735
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4079  df-id 4083  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-irdg 6065  df-oadd 6115  df-omul 6116  df-ni 6764  df-mi 6766  df-lti 6767
This theorem is referenced by:  ordpipqqs  6834  ltsonq  6858  ltanqg  6860  ltmnqg  6861  1lt2nq  6866
  Copyright terms: Public domain W3C validator