Proof of Theorem ltmpig
Step | Hyp | Ref
| Expression |
1 | | pinn 7271 |
. . . . 5
⊢ (𝐴 ∈ N →
𝐴 ∈
ω) |
2 | | pinn 7271 |
. . . . 5
⊢ (𝐵 ∈ N →
𝐵 ∈
ω) |
3 | | elni2 7276 |
. . . . . 6
⊢ (𝐶 ∈ N ↔
(𝐶 ∈ ω ∧
∅ ∈ 𝐶)) |
4 | | iba 298 |
. . . . . . . . 9
⊢ (∅
∈ 𝐶 → (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶))) |
5 | | nnmord 6496 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
6 | 4, 5 | sylan9bbr 460 |
. . . . . . . 8
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
7 | 6 | 3exp1 1218 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → (∅
∈ 𝐶 → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))) |
8 | 7 | imp4b 348 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐶 ∈ ω ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
9 | 3, 8 | syl5bi 151 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ∈ N →
(𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
10 | 1, 2, 9 | syl2an 287 |
. . . 4
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐶 ∈
N → (𝐴
∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
11 | 10 | imp 123 |
. . 3
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → (𝐴
∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
12 | | ltpiord 7281 |
. . . 4
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐴
<N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
13 | 12 | adantr 274 |
. . 3
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → (𝐴
<N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
14 | | mulclpi 7290 |
. . . . . . 7
⊢ ((𝐶 ∈ N ∧
𝐴 ∈ N)
→ (𝐶
·N 𝐴) ∈ N) |
15 | | mulclpi 7290 |
. . . . . . 7
⊢ ((𝐶 ∈ N ∧
𝐵 ∈ N)
→ (𝐶
·N 𝐵) ∈ N) |
16 | | ltpiord 7281 |
. . . . . . 7
⊢ (((𝐶
·N 𝐴) ∈ N ∧ (𝐶
·N 𝐵) ∈ N) → ((𝐶
·N 𝐴) <N (𝐶
·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵))) |
17 | 14, 15, 16 | syl2an 287 |
. . . . . 6
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → ((𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵))) |
18 | | mulpiord 7279 |
. . . . . . . 8
⊢ ((𝐶 ∈ N ∧
𝐴 ∈ N)
→ (𝐶
·N 𝐴) = (𝐶 ·o 𝐴)) |
19 | 18 | adantr 274 |
. . . . . . 7
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → (𝐶 ·N 𝐴) = (𝐶 ·o 𝐴)) |
20 | | mulpiord 7279 |
. . . . . . . 8
⊢ ((𝐶 ∈ N ∧
𝐵 ∈ N)
→ (𝐶
·N 𝐵) = (𝐶 ·o 𝐵)) |
21 | 20 | adantl 275 |
. . . . . . 7
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → (𝐶 ·N 𝐵) = (𝐶 ·o 𝐵)) |
22 | 19, 21 | eleq12d 2241 |
. . . . . 6
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → ((𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
23 | 17, 22 | bitrd 187 |
. . . . 5
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → ((𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
24 | 23 | anandis 587 |
. . . 4
⊢ ((𝐶 ∈ N ∧
(𝐴 ∈ N
∧ 𝐵 ∈
N)) → ((𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
25 | 24 | ancoms 266 |
. . 3
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → ((𝐶
·N 𝐴) <N (𝐶
·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
26 | 11, 13, 25 | 3bitr4d 219 |
. 2
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → (𝐴
<N 𝐵 ↔ (𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵))) |
27 | 26 | 3impa 1189 |
1
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → (𝐴
<N 𝐵 ↔ (𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵))) |