Proof of Theorem ltmpig
| Step | Hyp | Ref
| Expression |
| 1 | | pinn 7393 |
. . . . 5
⊢ (𝐴 ∈ N →
𝐴 ∈
ω) |
| 2 | | pinn 7393 |
. . . . 5
⊢ (𝐵 ∈ N →
𝐵 ∈
ω) |
| 3 | | elni2 7398 |
. . . . . 6
⊢ (𝐶 ∈ N ↔
(𝐶 ∈ ω ∧
∅ ∈ 𝐶)) |
| 4 | | iba 300 |
. . . . . . . . 9
⊢ (∅
∈ 𝐶 → (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶))) |
| 5 | | nnmord 6584 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 6 | 4, 5 | sylan9bbr 463 |
. . . . . . . 8
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 7 | 6 | 3exp1 1225 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → (∅
∈ 𝐶 → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))) |
| 8 | 7 | imp4b 350 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐶 ∈ ω ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
| 9 | 3, 8 | biimtrid 152 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ∈ N →
(𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
| 10 | 1, 2, 9 | syl2an 289 |
. . . 4
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐶 ∈
N → (𝐴
∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
| 11 | 10 | imp 124 |
. . 3
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → (𝐴
∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 12 | | ltpiord 7403 |
. . . 4
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐴
<N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 13 | 12 | adantr 276 |
. . 3
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → (𝐴
<N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 14 | | mulclpi 7412 |
. . . . . . 7
⊢ ((𝐶 ∈ N ∧
𝐴 ∈ N)
→ (𝐶
·N 𝐴) ∈ N) |
| 15 | | mulclpi 7412 |
. . . . . . 7
⊢ ((𝐶 ∈ N ∧
𝐵 ∈ N)
→ (𝐶
·N 𝐵) ∈ N) |
| 16 | | ltpiord 7403 |
. . . . . . 7
⊢ (((𝐶
·N 𝐴) ∈ N ∧ (𝐶
·N 𝐵) ∈ N) → ((𝐶
·N 𝐴) <N (𝐶
·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵))) |
| 17 | 14, 15, 16 | syl2an 289 |
. . . . . 6
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → ((𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵))) |
| 18 | | mulpiord 7401 |
. . . . . . . 8
⊢ ((𝐶 ∈ N ∧
𝐴 ∈ N)
→ (𝐶
·N 𝐴) = (𝐶 ·o 𝐴)) |
| 19 | 18 | adantr 276 |
. . . . . . 7
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → (𝐶 ·N 𝐴) = (𝐶 ·o 𝐴)) |
| 20 | | mulpiord 7401 |
. . . . . . . 8
⊢ ((𝐶 ∈ N ∧
𝐵 ∈ N)
→ (𝐶
·N 𝐵) = (𝐶 ·o 𝐵)) |
| 21 | 20 | adantl 277 |
. . . . . . 7
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → (𝐶 ·N 𝐵) = (𝐶 ·o 𝐵)) |
| 22 | 19, 21 | eleq12d 2267 |
. . . . . 6
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → ((𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 23 | 17, 22 | bitrd 188 |
. . . . 5
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → ((𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 24 | 23 | anandis 592 |
. . . 4
⊢ ((𝐶 ∈ N ∧
(𝐴 ∈ N
∧ 𝐵 ∈
N)) → ((𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 25 | 24 | ancoms 268 |
. . 3
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → ((𝐶
·N 𝐴) <N (𝐶
·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 26 | 11, 13, 25 | 3bitr4d 220 |
. 2
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → (𝐴
<N 𝐵 ↔ (𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵))) |
| 27 | 26 | 3impa 1196 |
1
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → (𝐴
<N 𝐵 ↔ (𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵))) |