ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iineq2dv GIF version

Theorem iineq2dv 3895
Description: Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.)
Hypothesis
Ref Expression
iuneq2dv.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
iineq2dv (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iineq2dv
StepHypRef Expression
1 nfv 1521 . 2 𝑥𝜑
2 iuneq2dv.1 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
31, 2iineq2d 3893 1 (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141   ciin 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-iin 3876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator