ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iin GIF version

Definition df-iin 3916
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3915. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 3948. Theorem intiin 3968 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 3914 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1363 . . . . 5 class 𝑦
76, 3wcel 2164 . . . 4 wff 𝑦𝐵
87, 1, 2wral 2472 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2179 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1364 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  eliin  3918  iineq1  3927  iineq2  3930  nfiinxy  3940  nfiinya  3942  nfii1  3944  dfiin2g  3946  cbviin  3951  intiin  3968  0iin  3972  viin  3973  iinxsng  3987  iinxprg  3988  iinuniss  3996  bdciin  15441
  Copyright terms: Public domain W3C validator