ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iin GIF version

Definition df-iin 3968
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3967. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4000. Theorem intiin 4020 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 3966 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1394 . . . . 5 class 𝑦
76, 3wcel 2200 . . . 4 wff 𝑦𝐵
87, 1, 2wral 2508 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2215 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1395 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  eliin  3970  iineq1  3979  iineq2  3982  nfiinxy  3992  nfiinya  3994  nfii1  3996  dfiin2g  3998  cbviin  4003  intiin  4020  0iin  4024  viin  4025  iinxsng  4039  iinxprg  4040  iinuniss  4048  bdciin  16266
  Copyright terms: Public domain W3C validator