| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-iin | GIF version | ||
| Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3918. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 3951. Theorem intiin 3971 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | ciin 3917 | . 2 class ∩ 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1363 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2167 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wral 2475 | . . 3 wff ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2182 | . 2 class {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1364 | 1 wff ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Colors of variables: wff set class |
| This definition is referenced by: eliin 3921 iineq1 3930 iineq2 3933 nfiinxy 3943 nfiinya 3945 nfii1 3947 dfiin2g 3949 cbviin 3954 intiin 3971 0iin 3975 viin 3976 iinxsng 3990 iinxprg 3991 iinuniss 3999 bdciin 15525 |
| Copyright terms: Public domain | W3C validator |