ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iin GIF version

Definition df-iin 3919
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3918. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 3951. Theorem intiin 3971 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 3917 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1363 . . . . 5 class 𝑦
76, 3wcel 2167 . . . 4 wff 𝑦𝐵
87, 1, 2wral 2475 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2182 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1364 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  eliin  3921  iineq1  3930  iineq2  3933  nfiinxy  3943  nfiinya  3945  nfii1  3947  dfiin2g  3949  cbviin  3954  intiin  3971  0iin  3975  viin  3976  iinxsng  3990  iinxprg  3991  iinuniss  3999  bdciin  15525
  Copyright terms: Public domain W3C validator