ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iin GIF version

Definition df-iin 3915
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3914. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 3947. Theorem intiin 3967 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 3913 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1363 . . . . 5 class 𝑦
76, 3wcel 2164 . . . 4 wff 𝑦𝐵
87, 1, 2wral 2472 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2179 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1364 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  eliin  3917  iineq1  3926  iineq2  3929  nfiinxy  3939  nfiinya  3941  nfii1  3943  dfiin2g  3945  cbviin  3950  intiin  3967  0iin  3971  viin  3972  iinxsng  3986  iinxprg  3987  iinuniss  3995  bdciin  15371
  Copyright terms: Public domain W3C validator