ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iin GIF version

Definition df-iin 3947
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3946. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 3979. Theorem intiin 3999 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 3945 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1374 . . . . 5 class 𝑦
76, 3wcel 2180 . . . 4 wff 𝑦𝐵
87, 1, 2wral 2488 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2195 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1375 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  eliin  3949  iineq1  3958  iineq2  3961  nfiinxy  3971  nfiinya  3973  nfii1  3975  dfiin2g  3977  cbviin  3982  intiin  3999  0iin  4003  viin  4004  iinxsng  4018  iinxprg  4019  iinuniss  4027  bdciin  16152
  Copyright terms: Public domain W3C validator