ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iin GIF version

Definition df-iin 3932
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3931. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 3964. Theorem intiin 3984 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 3930 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1372 . . . . 5 class 𝑦
76, 3wcel 2177 . . . 4 wff 𝑦𝐵
87, 1, 2wral 2485 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2192 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1373 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  eliin  3934  iineq1  3943  iineq2  3946  nfiinxy  3956  nfiinya  3958  nfii1  3960  dfiin2g  3962  cbviin  3967  intiin  3984  0iin  3988  viin  3989  iinxsng  4003  iinxprg  4004  iinuniss  4012  bdciin  15889
  Copyright terms: Public domain W3C validator