ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iin GIF version

Definition df-iin 3869
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3868. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 3901. Theorem intiin 3920 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 3867 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1342 . . . . 5 class 𝑦
76, 3wcel 2136 . . . 4 wff 𝑦𝐵
87, 1, 2wral 2444 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2151 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1343 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  eliin  3871  iineq1  3880  iineq2  3883  nfiinxy  3893  nfiinya  3895  nfii1  3897  dfiin2g  3899  cbviin  3904  intiin  3920  0iin  3924  viin  3925  iinxsng  3939  iinxprg  3940  iinuniss  3948  bdciin  13761
  Copyright terms: Public domain W3C validator