ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iin GIF version

Definition df-iin 3876
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3875. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 3908. Theorem intiin 3927 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 3874 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1347 . . . . 5 class 𝑦
76, 3wcel 2141 . . . 4 wff 𝑦𝐵
87, 1, 2wral 2448 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2156 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1348 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  eliin  3878  iineq1  3887  iineq2  3890  nfiinxy  3900  nfiinya  3902  nfii1  3904  dfiin2g  3906  cbviin  3911  intiin  3927  0iin  3931  viin  3932  iinxsng  3946  iinxprg  3947  iinuniss  3955  bdciin  13914
  Copyright terms: Public domain W3C validator