ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neanior GIF version

Theorem neanior 2423
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.)
Assertion
Ref Expression
neanior ((𝐴𝐵𝐶𝐷) ↔ ¬ (𝐴 = 𝐵𝐶 = 𝐷))

Proof of Theorem neanior
StepHypRef Expression
1 df-ne 2337 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 df-ne 2337 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2anbi12i 456 . 2 ((𝐴𝐵𝐶𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
4 pm4.56 770 . 2 ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵𝐶 = 𝐷))
53, 4bitri 183 1 ((𝐴𝐵𝐶𝐷) ↔ ¬ (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 698   = wceq 1343  wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-ne 2337
This theorem is referenced by:  nelpri  3600  nelprd  3602  eldifpr  3603  0nelop  4226  lcmgcd  12010  lcmdvds  12011  lgsdirnn0  13588  lgsdinn0  13589
  Copyright terms: Public domain W3C validator