ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necomd GIF version

Theorem necomd 2463
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
Hypothesis
Ref Expression
necomd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necomd (𝜑𝐵𝐴)

Proof of Theorem necomd
StepHypRef Expression
1 necomd.1 . 2 (𝜑𝐴𝐵)
2 necom 2461 . 2 (𝐴𝐵𝐵𝐴)
31, 2sylib 122 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wne 2377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-ne 2378
This theorem is referenced by:  ifnefals  3615  difsnb  3778  0nelop  4296  frecabcl  6492  fidifsnen  6974  tpfidisj  7033  omp1eomlem  7203  difinfsnlem  7208  fodjuomnilemdc  7253  en2eleq  7310  en2other2  7311  netap  7373  2omotaplemap  7376  ltned  8193  lt0ne0  8508  zdceq  9455  zneo  9481  xrlttri3  9926  qdceq  10394  flqltnz  10437  seqf1oglem1  10671  nn0opthd  10874  hashdifpr  10972  sumtp  11769  nninfctlemfo  12405  isprm2lem  12482  oddprm  12626  pcmpt  12710  ennnfonelemex  12829  perfectlem2  15516  lgsneg  15545  lgseisenlem4  15594  lgsquadlem1  15598  lgsquadlem3  15600  lgsquad2  15604  2lgsoddprm  15634  funvtxval0d  15676
  Copyright terms: Public domain W3C validator