Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necomd | GIF version |
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
Ref | Expression |
---|---|
necomd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
necomd | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | necom 2420 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-ne 2337 |
This theorem is referenced by: difsnb 3716 0nelop 4226 frecabcl 6367 fidifsnen 6836 tpfidisj 6893 omp1eomlem 7059 difinfsnlem 7064 fodjuomnilemdc 7108 en2eleq 7151 en2other2 7152 ltned 8012 lt0ne0 8326 zdceq 9266 zneo 9292 xrlttri3 9733 qdceq 10182 flqltnz 10222 nn0opthd 10635 hashdifpr 10733 sumtp 11355 isprm2lem 12048 oddprm 12191 pcmpt 12273 ennnfonelemex 12347 lgsneg 13565 |
Copyright terms: Public domain | W3C validator |