ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necomd GIF version

Theorem necomd 2433
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
Hypothesis
Ref Expression
necomd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necomd (𝜑𝐵𝐴)

Proof of Theorem necomd
StepHypRef Expression
1 necomd.1 . 2 (𝜑𝐴𝐵)
2 necom 2431 . 2 (𝐴𝐵𝐵𝐴)
31, 2sylib 122 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-ne 2348
This theorem is referenced by:  difsnb  3737  0nelop  4250  frecabcl  6402  fidifsnen  6872  tpfidisj  6929  omp1eomlem  7095  difinfsnlem  7100  fodjuomnilemdc  7144  en2eleq  7196  en2other2  7197  netap  7255  2omotaplemap  7258  ltned  8073  lt0ne0  8387  zdceq  9330  zneo  9356  xrlttri3  9799  qdceq  10249  flqltnz  10289  nn0opthd  10704  hashdifpr  10802  sumtp  11424  isprm2lem  12118  oddprm  12261  pcmpt  12343  ennnfonelemex  12417  lgsneg  14510
  Copyright terms: Public domain W3C validator