![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necomd | GIF version |
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
Ref | Expression |
---|---|
necomd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
necomd | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | necom 2431 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ≠ wne 2347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-ne 2348 |
This theorem is referenced by: difsnb 3737 0nelop 4250 frecabcl 6403 fidifsnen 6873 tpfidisj 6930 omp1eomlem 7096 difinfsnlem 7101 fodjuomnilemdc 7145 en2eleq 7197 en2other2 7198 netap 7256 2omotaplemap 7259 ltned 8074 lt0ne0 8388 zdceq 9331 zneo 9357 xrlttri3 9800 qdceq 10250 flqltnz 10290 nn0opthd 10705 hashdifpr 10803 sumtp 11425 isprm2lem 12119 oddprm 12262 pcmpt 12344 ennnfonelemex 12418 lgsneg 14586 |
Copyright terms: Public domain | W3C validator |