| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomd | GIF version | ||
| Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| necomd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necomd | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | necom 2484 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: ifnefals 3647 difsnb 3811 0nelop 4334 frecabcl 6551 fidifsnen 7040 tpfidisj 7099 omp1eomlem 7269 difinfsnlem 7274 fodjuomnilemdc 7319 en2eleq 7381 en2other2 7382 netap 7448 2omotaplemap 7451 ltned 8268 lt0ne0 8583 zdceq 9530 zneo 9556 xrlttri3 10001 qdceq 10472 flqltnz 10515 seqf1oglem1 10749 nn0opthd 10952 hashdifpr 11050 cats1un 11261 sumtp 11933 nninfctlemfo 12569 isprm2lem 12646 oddprm 12790 pcmpt 12874 ennnfonelemex 12993 perfectlem2 15682 lgsneg 15711 lgseisenlem4 15760 lgsquadlem1 15764 lgsquadlem3 15766 lgsquad2 15770 2lgsoddprm 15800 funvtxval0d 15842 umgrvad2edg 16017 pw1ndom3lem 16382 pw1ndom3 16383 |
| Copyright terms: Public domain | W3C validator |