| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomd | GIF version | ||
| Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| necomd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necomd | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | necom 2451 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: ifnefals 3604 difsnb 3766 0nelop 4282 frecabcl 6466 fidifsnen 6940 tpfidisj 6999 omp1eomlem 7169 difinfsnlem 7174 fodjuomnilemdc 7219 en2eleq 7276 en2other2 7277 netap 7339 2omotaplemap 7342 ltned 8159 lt0ne0 8474 zdceq 9420 zneo 9446 xrlttri3 9891 qdceq 10353 flqltnz 10396 seqf1oglem1 10630 nn0opthd 10833 hashdifpr 10931 sumtp 11598 nninfctlemfo 12234 isprm2lem 12311 oddprm 12455 pcmpt 12539 ennnfonelemex 12658 perfectlem2 15322 lgsneg 15351 lgseisenlem4 15400 lgsquadlem1 15404 lgsquadlem3 15406 lgsquad2 15410 2lgsoddprm 15440 |
| Copyright terms: Public domain | W3C validator |