Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necomd | GIF version |
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
Ref | Expression |
---|---|
necomd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
necomd | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | necom 2424 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ≠ wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-ne 2341 |
This theorem is referenced by: difsnb 3723 0nelop 4233 frecabcl 6378 fidifsnen 6848 tpfidisj 6905 omp1eomlem 7071 difinfsnlem 7076 fodjuomnilemdc 7120 en2eleq 7172 en2other2 7173 ltned 8033 lt0ne0 8347 zdceq 9287 zneo 9313 xrlttri3 9754 qdceq 10203 flqltnz 10243 nn0opthd 10656 hashdifpr 10755 sumtp 11377 isprm2lem 12070 oddprm 12213 pcmpt 12295 ennnfonelemex 12369 lgsneg 13719 |
Copyright terms: Public domain | W3C validator |