| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomd | GIF version | ||
| Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| necomd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necomd | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | necom 2461 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-ne 2378 |
| This theorem is referenced by: ifnefals 3615 difsnb 3778 0nelop 4296 frecabcl 6492 fidifsnen 6974 tpfidisj 7033 omp1eomlem 7203 difinfsnlem 7208 fodjuomnilemdc 7253 en2eleq 7310 en2other2 7311 netap 7373 2omotaplemap 7376 ltned 8193 lt0ne0 8508 zdceq 9455 zneo 9481 xrlttri3 9926 qdceq 10394 flqltnz 10437 seqf1oglem1 10671 nn0opthd 10874 hashdifpr 10972 sumtp 11769 nninfctlemfo 12405 isprm2lem 12482 oddprm 12626 pcmpt 12710 ennnfonelemex 12829 perfectlem2 15516 lgsneg 15545 lgseisenlem4 15594 lgsquadlem1 15598 lgsquadlem3 15600 lgsquad2 15604 2lgsoddprm 15634 funvtxval0d 15676 |
| Copyright terms: Public domain | W3C validator |