ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necomd GIF version

Theorem necomd 2453
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
Hypothesis
Ref Expression
necomd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necomd (𝜑𝐵𝐴)

Proof of Theorem necomd
StepHypRef Expression
1 necomd.1 . 2 (𝜑𝐴𝐵)
2 necom 2451 . 2 (𝐴𝐵𝐵𝐴)
31, 2sylib 122 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-ne 2368
This theorem is referenced by:  ifnefals  3604  difsnb  3766  0nelop  4282  frecabcl  6466  fidifsnen  6940  tpfidisj  6999  omp1eomlem  7169  difinfsnlem  7174  fodjuomnilemdc  7219  en2eleq  7274  en2other2  7275  netap  7337  2omotaplemap  7340  ltned  8157  lt0ne0  8472  zdceq  9418  zneo  9444  xrlttri3  9889  qdceq  10351  flqltnz  10394  seqf1oglem1  10628  nn0opthd  10831  hashdifpr  10929  sumtp  11596  nninfctlemfo  12232  isprm2lem  12309  oddprm  12453  pcmpt  12537  ennnfonelemex  12656  perfectlem2  15320  lgsneg  15349  lgseisenlem4  15398  lgsquadlem1  15402  lgsquadlem3  15404  lgsquad2  15408  2lgsoddprm  15438
  Copyright terms: Public domain W3C validator