ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necomd GIF version

Theorem necomd 2433
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
Hypothesis
Ref Expression
necomd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necomd (𝜑𝐵𝐴)

Proof of Theorem necomd
StepHypRef Expression
1 necomd.1 . 2 (𝜑𝐴𝐵)
2 necom 2431 . 2 (𝐴𝐵𝐵𝐴)
31, 2sylib 122 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-ne 2348
This theorem is referenced by:  difsnb  3735  0nelop  4248  frecabcl  6399  fidifsnen  6869  tpfidisj  6926  omp1eomlem  7092  difinfsnlem  7097  fodjuomnilemdc  7141  en2eleq  7193  en2other2  7194  netap  7252  2omotaplemap  7255  ltned  8070  lt0ne0  8384  zdceq  9327  zneo  9353  xrlttri3  9796  qdceq  10246  flqltnz  10286  nn0opthd  10701  hashdifpr  10799  sumtp  11421  isprm2lem  12115  oddprm  12258  pcmpt  12340  ennnfonelemex  12414  lgsneg  14395
  Copyright terms: Public domain W3C validator