ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necomd GIF version

Theorem necomd 2426
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
Hypothesis
Ref Expression
necomd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necomd (𝜑𝐵𝐴)

Proof of Theorem necomd
StepHypRef Expression
1 necomd.1 . 2 (𝜑𝐴𝐵)
2 necom 2424 . 2 (𝐴𝐵𝐵𝐴)
31, 2sylib 121 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-ne 2341
This theorem is referenced by:  difsnb  3723  0nelop  4233  frecabcl  6378  fidifsnen  6848  tpfidisj  6905  omp1eomlem  7071  difinfsnlem  7076  fodjuomnilemdc  7120  en2eleq  7172  en2other2  7173  ltned  8033  lt0ne0  8347  zdceq  9287  zneo  9313  xrlttri3  9754  qdceq  10203  flqltnz  10243  nn0opthd  10656  hashdifpr  10755  sumtp  11377  isprm2lem  12070  oddprm  12213  pcmpt  12295  ennnfonelemex  12369  lgsneg  13719
  Copyright terms: Public domain W3C validator