| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomd | GIF version | ||
| Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| necomd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necomd | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | necom 2464 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ≠ wne 2380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1473 ax-gen 1475 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 df-ne 2381 |
| This theorem is referenced by: ifnefals 3627 difsnb 3790 0nelop 4313 frecabcl 6515 fidifsnen 7000 tpfidisj 7059 omp1eomlem 7229 difinfsnlem 7234 fodjuomnilemdc 7279 en2eleq 7341 en2other2 7342 netap 7408 2omotaplemap 7411 ltned 8228 lt0ne0 8543 zdceq 9490 zneo 9516 xrlttri3 9961 qdceq 10431 flqltnz 10474 seqf1oglem1 10708 nn0opthd 10911 hashdifpr 11009 cats1un 11219 sumtp 11891 nninfctlemfo 12527 isprm2lem 12604 oddprm 12748 pcmpt 12832 ennnfonelemex 12951 perfectlem2 15639 lgsneg 15668 lgseisenlem4 15717 lgsquadlem1 15721 lgsquadlem3 15723 lgsquad2 15727 2lgsoddprm 15757 funvtxval0d 15799 umgrvad2edg 15974 |
| Copyright terms: Public domain | W3C validator |