| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomd | GIF version | ||
| Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| necomd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necomd | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | necom 2451 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: ifnefals 3603 difsnb 3765 0nelop 4281 frecabcl 6457 fidifsnen 6931 tpfidisj 6990 omp1eomlem 7160 difinfsnlem 7165 fodjuomnilemdc 7210 en2eleq 7262 en2other2 7263 netap 7321 2omotaplemap 7324 ltned 8140 lt0ne0 8455 zdceq 9401 zneo 9427 xrlttri3 9872 qdceq 10334 flqltnz 10377 seqf1oglem1 10611 nn0opthd 10814 hashdifpr 10912 sumtp 11579 nninfctlemfo 12207 isprm2lem 12284 oddprm 12428 pcmpt 12512 ennnfonelemex 12631 perfectlem2 15236 lgsneg 15265 lgseisenlem4 15314 lgsquadlem1 15318 lgsquadlem3 15320 lgsquad2 15324 2lgsoddprm 15354 |
| Copyright terms: Public domain | W3C validator |