ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neanior Unicode version

Theorem neanior 2423
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.)
Assertion
Ref Expression
neanior  |-  ( ( A  =/=  B  /\  C  =/=  D )  <->  -.  ( A  =  B  \/  C  =  D )
)

Proof of Theorem neanior
StepHypRef Expression
1 df-ne 2337 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
2 df-ne 2337 . . 3  |-  ( C  =/=  D  <->  -.  C  =  D )
31, 2anbi12i 456 . 2  |-  ( ( A  =/=  B  /\  C  =/=  D )  <->  ( -.  A  =  B  /\  -.  C  =  D
) )
4 pm4.56 770 . 2  |-  ( ( -.  A  =  B  /\  -.  C  =  D )  <->  -.  ( A  =  B  \/  C  =  D )
)
53, 4bitri 183 1  |-  ( ( A  =/=  B  /\  C  =/=  D )  <->  -.  ( A  =  B  \/  C  =  D )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-ne 2337
This theorem is referenced by:  nelpri  3600  nelprd  3602  eldifpr  3603  0nelop  4226  lcmgcd  12010  lcmdvds  12011  lgsdirnn0  13588  lgsdinn0  13589
  Copyright terms: Public domain W3C validator