Proof of Theorem lcmgcd
Step | Hyp | Ref
| Expression |
1 | | gcdcl 11899 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈
ℕ0) |
2 | 1 | nn0cnd 9169 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ) |
3 | 2 | mul02d 8290 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0
· (𝑀 gcd 𝑁)) = 0) |
4 | | 0z 9202 |
. . . . . . . . . 10
⊢ 0 ∈
ℤ |
5 | | lcmcom 11996 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑁 lcm 0) =
(0 lcm 𝑁)) |
6 | 4, 5 | mpan2 422 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 lcm 0) = (0 lcm 𝑁)) |
7 | | lcm0val 11997 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0) |
8 | 6, 7 | eqtr3d 2200 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → (0 lcm
𝑁) = 0) |
9 | 8 | adantl 275 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 lcm
𝑁) = 0) |
10 | 9 | oveq1d 5857 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 lcm
𝑁) · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁))) |
11 | | zcn 9196 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
12 | 11 | adantl 275 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℂ) |
13 | 12 | mul02d 8290 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0
· 𝑁) =
0) |
14 | 13 | abs00bd 11008 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘(0 · 𝑁))
= 0) |
15 | 3, 10, 14 | 3eqtr4d 2208 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 lcm
𝑁) · (𝑀 gcd 𝑁)) = (abs‘(0 · 𝑁))) |
16 | 15 | adantr 274 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((0 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(0 · 𝑁))) |
17 | | simpr 109 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0) |
18 | 17 | oveq1d 5857 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = (0 lcm 𝑁)) |
19 | 18 | oveq1d 5857 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((0 lcm 𝑁) · (𝑀 gcd 𝑁))) |
20 | 17 | oveq1d 5857 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 · 𝑁) = (0 · 𝑁)) |
21 | 20 | fveq2d 5490 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (abs‘(𝑀 · 𝑁)) = (abs‘(0 · 𝑁))) |
22 | 16, 19, 21 | 3eqtr4d 2208 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |
23 | | lcm0val 11997 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) |
24 | 23 | adantr 274 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 0) = 0) |
25 | 24 | oveq1d 5857 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁))) |
26 | | zcn 9196 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
27 | 26 | adantr 274 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈
ℂ) |
28 | 27 | mul01d 8291 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 0) =
0) |
29 | 28 | abs00bd 11008 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘(𝑀 · 0))
= 0) |
30 | 3, 25, 29 | 3eqtr4d 2208 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 0))) |
31 | 30 | adantr 274 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 0))) |
32 | | simpr 109 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0) |
33 | 32 | oveq2d 5858 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm 0)) |
34 | 33 | oveq1d 5857 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 0) · (𝑀 gcd 𝑁))) |
35 | 32 | oveq2d 5858 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 · 𝑁) = (𝑀 · 0)) |
36 | 35 | fveq2d 5490 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (abs‘(𝑀 · 𝑁)) = (abs‘(𝑀 · 0))) |
37 | 31, 34, 36 | 3eqtr4d 2208 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |
38 | 22, 37 | jaodan 787 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |
39 | | neanior 2423 |
. . . . 5
⊢ ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) |
40 | | nnabscl 11042 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈
ℕ) |
41 | | nnabscl 11042 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) |
42 | 40, 41 | anim12i 336 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) →
((abs‘𝑀) ∈
ℕ ∧ (abs‘𝑁)
∈ ℕ)) |
43 | 42 | an4s 578 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∈ ℕ ∧
(abs‘𝑁) ∈
ℕ)) |
44 | 39, 43 | sylan2br 286 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → ((abs‘𝑀) ∈ ℕ ∧
(abs‘𝑁) ∈
ℕ)) |
45 | | lcmgcdlem 12009 |
. . . . 5
⊢
(((abs‘𝑀)
∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) =
(abs‘((abs‘𝑀)
· (abs‘𝑁)))
∧ ((0 ∈ ℕ ∧ ((abs‘𝑀) ∥ 0 ∧ (abs‘𝑁) ∥ 0)) →
((abs‘𝑀) lcm
(abs‘𝑁)) ∥
0))) |
46 | 45 | simpld 111 |
. . . 4
⊢
(((abs‘𝑀)
∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) =
(abs‘((abs‘𝑀)
· (abs‘𝑁)))) |
47 | 44, 46 | syl 14 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) =
(abs‘((abs‘𝑀)
· (abs‘𝑁)))) |
48 | | lcmabs 12008 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑀) lcm
(abs‘𝑁)) = (𝑀 lcm 𝑁)) |
49 | | gcdabs 11921 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑀) gcd
(abs‘𝑁)) = (𝑀 gcd 𝑁)) |
50 | 48, 49 | oveq12d 5860 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(((abs‘𝑀) lcm
(abs‘𝑁)) ·
((abs‘𝑀) gcd
(abs‘𝑁))) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁))) |
51 | 50 | adantr 274 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁))) |
52 | | absidm 11040 |
. . . . . . 7
⊢ (𝑀 ∈ ℂ →
(abs‘(abs‘𝑀)) =
(abs‘𝑀)) |
53 | | absidm 11040 |
. . . . . . 7
⊢ (𝑁 ∈ ℂ →
(abs‘(abs‘𝑁)) =
(abs‘𝑁)) |
54 | 52, 53 | oveqan12d 5861 |
. . . . . 6
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) →
((abs‘(abs‘𝑀))
· (abs‘(abs‘𝑁))) = ((abs‘𝑀) · (abs‘𝑁))) |
55 | 26, 11, 54 | syl2an 287 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘(abs‘𝑀))
· (abs‘(abs‘𝑁))) = ((abs‘𝑀) · (abs‘𝑁))) |
56 | | nn0abscl 11027 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ →
(abs‘𝑀) ∈
ℕ0) |
57 | 56 | nn0cnd 9169 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ →
(abs‘𝑀) ∈
ℂ) |
58 | 57 | adantr 274 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘𝑀) ∈
ℂ) |
59 | | nn0abscl 11027 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℕ0) |
60 | 59 | nn0cnd 9169 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℂ) |
61 | 60 | adantl 275 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘𝑁) ∈
ℂ) |
62 | 58, 61 | absmuld 11136 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘((abs‘𝑀)
· (abs‘𝑁))) =
((abs‘(abs‘𝑀))
· (abs‘(abs‘𝑁)))) |
63 | 27, 12 | absmuld 11136 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘(𝑀 ·
𝑁)) = ((abs‘𝑀) · (abs‘𝑁))) |
64 | 55, 62, 63 | 3eqtr4d 2208 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘((abs‘𝑀)
· (abs‘𝑁))) =
(abs‘(𝑀 ·
𝑁))) |
65 | 64 | adantr 274 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) →
(abs‘((abs‘𝑀)
· (abs‘𝑁))) =
(abs‘(𝑀 ·
𝑁))) |
66 | 47, 51, 65 | 3eqtr3d 2206 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |
67 | | lcmmndc 11994 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID (𝑀 = 0
∨ 𝑁 =
0)) |
68 | | exmiddc 826 |
. . 3
⊢
(DECID (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0))) |
69 | 67, 68 | syl 14 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0))) |
70 | 38, 66, 69 | mpjaodan 788 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |