Proof of Theorem lcmgcd
| Step | Hyp | Ref
 | Expression | 
| 1 |   | gcdcl 12133 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈
ℕ0) | 
| 2 | 1 | nn0cnd 9304 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ) | 
| 3 | 2 | mul02d 8418 | 
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0
· (𝑀 gcd 𝑁)) = 0) | 
| 4 |   | 0z 9337 | 
. . . . . . . . . 10
⊢ 0 ∈
ℤ | 
| 5 |   | lcmcom 12232 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑁 lcm 0) =
(0 lcm 𝑁)) | 
| 6 | 4, 5 | mpan2 425 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 lcm 0) = (0 lcm 𝑁)) | 
| 7 |   | lcm0val 12233 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0) | 
| 8 | 6, 7 | eqtr3d 2231 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → (0 lcm
𝑁) = 0) | 
| 9 | 8 | adantl 277 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 lcm
𝑁) = 0) | 
| 10 | 9 | oveq1d 5937 | 
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 lcm
𝑁) · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁))) | 
| 11 |   | zcn 9331 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) | 
| 12 | 11 | adantl 277 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℂ) | 
| 13 | 12 | mul02d 8418 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0
· 𝑁) =
0) | 
| 14 | 13 | abs00bd 11231 | 
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘(0 · 𝑁))
= 0) | 
| 15 | 3, 10, 14 | 3eqtr4d 2239 | 
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 lcm
𝑁) · (𝑀 gcd 𝑁)) = (abs‘(0 · 𝑁))) | 
| 16 | 15 | adantr 276 | 
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((0 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(0 · 𝑁))) | 
| 17 |   | simpr 110 | 
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0) | 
| 18 | 17 | oveq1d 5937 | 
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = (0 lcm 𝑁)) | 
| 19 | 18 | oveq1d 5937 | 
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((0 lcm 𝑁) · (𝑀 gcd 𝑁))) | 
| 20 | 17 | oveq1d 5937 | 
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 · 𝑁) = (0 · 𝑁)) | 
| 21 | 20 | fveq2d 5562 | 
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (abs‘(𝑀 · 𝑁)) = (abs‘(0 · 𝑁))) | 
| 22 | 16, 19, 21 | 3eqtr4d 2239 | 
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | 
| 23 |   | lcm0val 12233 | 
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) | 
| 24 | 23 | adantr 276 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 0) = 0) | 
| 25 | 24 | oveq1d 5937 | 
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁))) | 
| 26 |   | zcn 9331 | 
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) | 
| 27 | 26 | adantr 276 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈
ℂ) | 
| 28 | 27 | mul01d 8419 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 0) =
0) | 
| 29 | 28 | abs00bd 11231 | 
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘(𝑀 · 0))
= 0) | 
| 30 | 3, 25, 29 | 3eqtr4d 2239 | 
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 0))) | 
| 31 | 30 | adantr 276 | 
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 0))) | 
| 32 |   | simpr 110 | 
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0) | 
| 33 | 32 | oveq2d 5938 | 
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm 0)) | 
| 34 | 33 | oveq1d 5937 | 
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 0) · (𝑀 gcd 𝑁))) | 
| 35 | 32 | oveq2d 5938 | 
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 · 𝑁) = (𝑀 · 0)) | 
| 36 | 35 | fveq2d 5562 | 
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (abs‘(𝑀 · 𝑁)) = (abs‘(𝑀 · 0))) | 
| 37 | 31, 34, 36 | 3eqtr4d 2239 | 
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | 
| 38 | 22, 37 | jaodan 798 | 
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | 
| 39 |   | neanior 2454 | 
. . . . 5
⊢ ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) | 
| 40 |   | nnabscl 11265 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈
ℕ) | 
| 41 |   | nnabscl 11265 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) | 
| 42 | 40, 41 | anim12i 338 | 
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) →
((abs‘𝑀) ∈
ℕ ∧ (abs‘𝑁)
∈ ℕ)) | 
| 43 | 42 | an4s 588 | 
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∈ ℕ ∧
(abs‘𝑁) ∈
ℕ)) | 
| 44 | 39, 43 | sylan2br 288 | 
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → ((abs‘𝑀) ∈ ℕ ∧
(abs‘𝑁) ∈
ℕ)) | 
| 45 |   | lcmgcdlem 12245 | 
. . . . 5
⊢
(((abs‘𝑀)
∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) =
(abs‘((abs‘𝑀)
· (abs‘𝑁)))
∧ ((0 ∈ ℕ ∧ ((abs‘𝑀) ∥ 0 ∧ (abs‘𝑁) ∥ 0)) →
((abs‘𝑀) lcm
(abs‘𝑁)) ∥
0))) | 
| 46 | 45 | simpld 112 | 
. . . 4
⊢
(((abs‘𝑀)
∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) =
(abs‘((abs‘𝑀)
· (abs‘𝑁)))) | 
| 47 | 44, 46 | syl 14 | 
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) =
(abs‘((abs‘𝑀)
· (abs‘𝑁)))) | 
| 48 |   | lcmabs 12244 | 
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑀) lcm
(abs‘𝑁)) = (𝑀 lcm 𝑁)) | 
| 49 |   | gcdabs 12155 | 
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑀) gcd
(abs‘𝑁)) = (𝑀 gcd 𝑁)) | 
| 50 | 48, 49 | oveq12d 5940 | 
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(((abs‘𝑀) lcm
(abs‘𝑁)) ·
((abs‘𝑀) gcd
(abs‘𝑁))) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁))) | 
| 51 | 50 | adantr 276 | 
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁))) | 
| 52 |   | absidm 11263 | 
. . . . . . 7
⊢ (𝑀 ∈ ℂ →
(abs‘(abs‘𝑀)) =
(abs‘𝑀)) | 
| 53 |   | absidm 11263 | 
. . . . . . 7
⊢ (𝑁 ∈ ℂ →
(abs‘(abs‘𝑁)) =
(abs‘𝑁)) | 
| 54 | 52, 53 | oveqan12d 5941 | 
. . . . . 6
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) →
((abs‘(abs‘𝑀))
· (abs‘(abs‘𝑁))) = ((abs‘𝑀) · (abs‘𝑁))) | 
| 55 | 26, 11, 54 | syl2an 289 | 
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘(abs‘𝑀))
· (abs‘(abs‘𝑁))) = ((abs‘𝑀) · (abs‘𝑁))) | 
| 56 |   | nn0abscl 11250 | 
. . . . . . . 8
⊢ (𝑀 ∈ ℤ →
(abs‘𝑀) ∈
ℕ0) | 
| 57 | 56 | nn0cnd 9304 | 
. . . . . . 7
⊢ (𝑀 ∈ ℤ →
(abs‘𝑀) ∈
ℂ) | 
| 58 | 57 | adantr 276 | 
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘𝑀) ∈
ℂ) | 
| 59 |   | nn0abscl 11250 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℕ0) | 
| 60 | 59 | nn0cnd 9304 | 
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℂ) | 
| 61 | 60 | adantl 277 | 
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘𝑁) ∈
ℂ) | 
| 62 | 58, 61 | absmuld 11359 | 
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘((abs‘𝑀)
· (abs‘𝑁))) =
((abs‘(abs‘𝑀))
· (abs‘(abs‘𝑁)))) | 
| 63 | 27, 12 | absmuld 11359 | 
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘(𝑀 ·
𝑁)) = ((abs‘𝑀) · (abs‘𝑁))) | 
| 64 | 55, 62, 63 | 3eqtr4d 2239 | 
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘((abs‘𝑀)
· (abs‘𝑁))) =
(abs‘(𝑀 ·
𝑁))) | 
| 65 | 64 | adantr 276 | 
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) →
(abs‘((abs‘𝑀)
· (abs‘𝑁))) =
(abs‘(𝑀 ·
𝑁))) | 
| 66 | 47, 51, 65 | 3eqtr3d 2237 | 
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | 
| 67 |   | lcmmndc 12230 | 
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID (𝑀 = 0
∨ 𝑁 =
0)) | 
| 68 |   | exmiddc 837 | 
. . 3
⊢
(DECID (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0))) | 
| 69 | 67, 68 | syl 14 | 
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0))) | 
| 70 | 38, 66, 69 | mpjaodan 799 | 
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |