ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmgcd GIF version

Theorem lcmgcd 12273
Description: The product of two numbers' least common multiple and greatest common divisor is the absolute value of the product of the two numbers. In particular, that absolute value is the least common multiple of two coprime numbers, for which (𝑀 gcd 𝑁) = 1.

Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic or of Bézout's identity bezout 12205; see, e.g., https://proofwiki.org/wiki/Product_of_GCD_and_LCM 12205 and https://math.stackexchange.com/a/470827 12205. This proof uses the latter to first confirm it for positive integers 𝑀 and 𝑁 (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 12260 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.)

Assertion
Ref Expression
lcmgcd ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))

Proof of Theorem lcmgcd
StepHypRef Expression
1 gcdcl 12160 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
21nn0cnd 9323 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ)
32mul02d 8437 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (𝑀 gcd 𝑁)) = 0)
4 0z 9356 . . . . . . . . . 10 0 ∈ ℤ
5 lcmcom 12259 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 lcm 0) = (0 lcm 𝑁))
64, 5mpan2 425 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 lcm 0) = (0 lcm 𝑁))
7 lcm0val 12260 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
86, 7eqtr3d 2231 . . . . . . . 8 (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0)
98adantl 277 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 lcm 𝑁) = 0)
109oveq1d 5940 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 lcm 𝑁) · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁)))
11 zcn 9350 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1211adantl 277 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
1312mul02d 8437 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0)
1413abs00bd 11250 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(0 · 𝑁)) = 0)
153, 10, 143eqtr4d 2239 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(0 · 𝑁)))
1615adantr 276 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((0 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(0 · 𝑁)))
17 simpr 110 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
1817oveq1d 5940 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = (0 lcm 𝑁))
1918oveq1d 5940 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((0 lcm 𝑁) · (𝑀 gcd 𝑁)))
2017oveq1d 5940 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 · 𝑁) = (0 · 𝑁))
2120fveq2d 5565 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (abs‘(𝑀 · 𝑁)) = (abs‘(0 · 𝑁)))
2216, 19, 213eqtr4d 2239 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
23 lcm0val 12260 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
2423adantr 276 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 0) = 0)
2524oveq1d 5940 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁)))
26 zcn 9350 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2726adantr 276 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
2827mul01d 8438 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 0) = 0)
2928abs00bd 11250 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 0)) = 0)
303, 25, 293eqtr4d 2239 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 0)))
3130adantr 276 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 0) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 0)))
32 simpr 110 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0)
3332oveq2d 5941 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
3433oveq1d 5940 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 0) · (𝑀 gcd 𝑁)))
3532oveq2d 5941 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 · 𝑁) = (𝑀 · 0))
3635fveq2d 5565 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (abs‘(𝑀 · 𝑁)) = (abs‘(𝑀 · 0)))
3731, 34, 363eqtr4d 2239 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
3822, 37jaodan 798 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
39 neanior 2454 . . . . 5 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0))
40 nnabscl 11284 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
41 nnabscl 11284 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
4240, 41anim12i 338 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ))
4342an4s 588 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ))
4439, 43sylan2br 288 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ))
45 lcmgcdlem 12272 . . . . 5 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))) ∧ ((0 ∈ ℕ ∧ ((abs‘𝑀) ∥ 0 ∧ (abs‘𝑁) ∥ 0)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ 0)))
4645simpld 112 . . . 4 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))))
4744, 46syl 14 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))))
48 lcmabs 12271 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
49 gcdabs 12182 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
5048, 49oveq12d 5943 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)))
5150adantr 276 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)))
52 absidm 11282 . . . . . . 7 (𝑀 ∈ ℂ → (abs‘(abs‘𝑀)) = (abs‘𝑀))
53 absidm 11282 . . . . . . 7 (𝑁 ∈ ℂ → (abs‘(abs‘𝑁)) = (abs‘𝑁))
5452, 53oveqan12d 5944 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((abs‘(abs‘𝑀)) · (abs‘(abs‘𝑁))) = ((abs‘𝑀) · (abs‘𝑁)))
5526, 11, 54syl2an 289 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(abs‘𝑀)) · (abs‘(abs‘𝑁))) = ((abs‘𝑀) · (abs‘𝑁)))
56 nn0abscl 11269 . . . . . . . 8 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
5756nn0cnd 9323 . . . . . . 7 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℂ)
5857adantr 276 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℂ)
59 nn0abscl 11269 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
6059nn0cnd 9323 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℂ)
6160adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑁) ∈ ℂ)
6258, 61absmuld 11378 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘((abs‘𝑀) · (abs‘𝑁))) = ((abs‘(abs‘𝑀)) · (abs‘(abs‘𝑁))))
6327, 12absmuld 11378 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
6455, 62, 633eqtr4d 2239 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘((abs‘𝑀) · (abs‘𝑁))) = (abs‘(𝑀 · 𝑁)))
6564adantr 276 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘((abs‘𝑀) · (abs‘𝑁))) = (abs‘(𝑀 · 𝑁)))
6647, 51, 653eqtr3d 2237 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
67 lcmmndc 12257 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
68 exmiddc 837 . . 3 (DECID (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
6967, 68syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
7038, 66, 69mpjaodan 799 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7896  0cc0 7898   · cmul 7903  cn 9009  cz 9345  abscabs 11181  cdvds 11971   gcd cgcd 12147   lcm clcm 12255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-lcm 12256
This theorem is referenced by:  lcmid  12275  lcm1  12276  lcmgcdnn  12277
  Copyright terms: Public domain W3C validator