Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0nelop | GIF version |
Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
0nelop | ⊢ ¬ ∅ ∈ 〈𝐴, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ∈ 〈𝐴, 𝐵〉) | |
2 | oprcl 3789 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | dfopg 3763 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
5 | 1, 4 | eleqtrd 2249 | . . 3 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ∈ {{𝐴}, {𝐴, 𝐵}}) |
6 | elpri 3606 | . . 3 ⊢ (∅ ∈ {{𝐴}, {𝐴, 𝐵}} → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) | |
7 | 5, 6 | syl 14 | . 2 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) |
8 | 2 | simpld 111 | . . . . . 6 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → 𝐴 ∈ V) |
9 | snnzg 3700 | . . . . . 6 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
10 | 8, 9 | syl 14 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → {𝐴} ≠ ∅) |
11 | 10 | necomd 2426 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ≠ {𝐴}) |
12 | prnzg 3707 | . . . . . 6 ⊢ (𝐴 ∈ V → {𝐴, 𝐵} ≠ ∅) | |
13 | 8, 12 | syl 14 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → {𝐴, 𝐵} ≠ ∅) |
14 | 13 | necomd 2426 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ≠ {𝐴, 𝐵}) |
15 | 11, 14 | jca 304 | . . 3 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵})) |
16 | neanior 2427 | . . 3 ⊢ ((∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}) ↔ ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) | |
17 | 15, 16 | sylib 121 | . 2 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) |
18 | 7, 17 | pm2.65i 634 | 1 ⊢ ¬ ∅ ∈ 〈𝐴, 𝐵〉 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 Vcvv 2730 ∅c0 3414 {csn 3583 {cpr 3584 〈cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-un 3125 df-nul 3415 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: 0nelelxp 4640 |
Copyright terms: Public domain | W3C validator |