| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nelop | GIF version | ||
| Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0nelop | ⊢ ¬ ∅ ∈ 〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ∈ 〈𝐴, 𝐵〉) | |
| 2 | oprcl 3843 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 3 | dfopg 3817 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
| 5 | 1, 4 | eleqtrd 2284 | . . 3 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ∈ {{𝐴}, {𝐴, 𝐵}}) |
| 6 | elpri 3656 | . . 3 ⊢ (∅ ∈ {{𝐴}, {𝐴, 𝐵}} → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) | |
| 7 | 5, 6 | syl 14 | . 2 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) |
| 8 | 2 | simpld 112 | . . . . . 6 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → 𝐴 ∈ V) |
| 9 | snnzg 3750 | . . . . . 6 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
| 10 | 8, 9 | syl 14 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → {𝐴} ≠ ∅) |
| 11 | 10 | necomd 2462 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ≠ {𝐴}) |
| 12 | prnzg 3757 | . . . . . 6 ⊢ (𝐴 ∈ V → {𝐴, 𝐵} ≠ ∅) | |
| 13 | 8, 12 | syl 14 | . . . . 5 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → {𝐴, 𝐵} ≠ ∅) |
| 14 | 13 | necomd 2462 | . . . 4 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ∅ ≠ {𝐴, 𝐵}) |
| 15 | 11, 14 | jca 306 | . . 3 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → (∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵})) |
| 16 | neanior 2463 | . . 3 ⊢ ((∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}) ↔ ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) | |
| 17 | 15, 16 | sylib 122 | . 2 ⊢ (∅ ∈ 〈𝐴, 𝐵〉 → ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) |
| 18 | 7, 17 | pm2.65i 640 | 1 ⊢ ¬ ∅ ∈ 〈𝐴, 𝐵〉 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 Vcvv 2772 ∅c0 3460 {csn 3633 {cpr 3634 〈cop 3636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-v 2774 df-dif 3168 df-un 3170 df-nul 3461 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: opwo0id 4293 0nelelxp 4704 |
| Copyright terms: Public domain | W3C validator |