![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0nelop | GIF version |
Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
0nelop | ⊢ ¬ ∅ ∈ ⟨𝐴, 𝐵⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ∈ ⟨𝐴, 𝐵⟩) | |
2 | oprcl 3804 | . . . . 5 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | dfopg 3778 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}) |
5 | 1, 4 | eleqtrd 2256 | . . 3 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ∈ {{𝐴}, {𝐴, 𝐵}}) |
6 | elpri 3617 | . . 3 ⊢ (∅ ∈ {{𝐴}, {𝐴, 𝐵}} → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) | |
7 | 5, 6 | syl 14 | . 2 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) |
8 | 2 | simpld 112 | . . . . . 6 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → 𝐴 ∈ V) |
9 | snnzg 3711 | . . . . . 6 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
10 | 8, 9 | syl 14 | . . . . 5 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → {𝐴} ≠ ∅) |
11 | 10 | necomd 2433 | . . . 4 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ≠ {𝐴}) |
12 | prnzg 3718 | . . . . . 6 ⊢ (𝐴 ∈ V → {𝐴, 𝐵} ≠ ∅) | |
13 | 8, 12 | syl 14 | . . . . 5 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → {𝐴, 𝐵} ≠ ∅) |
14 | 13 | necomd 2433 | . . . 4 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → ∅ ≠ {𝐴, 𝐵}) |
15 | 11, 14 | jca 306 | . . 3 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → (∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵})) |
16 | neanior 2434 | . . 3 ⊢ ((∅ ≠ {𝐴} ∧ ∅ ≠ {𝐴, 𝐵}) ↔ ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) | |
17 | 15, 16 | sylib 122 | . 2 ⊢ (∅ ∈ ⟨𝐴, 𝐵⟩ → ¬ (∅ = {𝐴} ∨ ∅ = {𝐴, 𝐵})) |
18 | 7, 17 | pm2.65i 639 | 1 ⊢ ¬ ∅ ∈ ⟨𝐴, 𝐵⟩ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 Vcvv 2739 ∅c0 3424 {csn 3594 {cpr 3595 ⟨cop 3597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-v 2741 df-dif 3133 df-un 3135 df-nul 3425 df-sn 3600 df-pr 3601 df-op 3603 |
This theorem is referenced by: 0nelelxp 4657 |
Copyright terms: Public domain | W3C validator |