ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirnn0 GIF version

Theorem lgsdirnn0 14115
Description: Variation on lgsdir 14103 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdirnn0 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))

Proof of Theorem lgsdirnn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5876 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥 /L 𝑁) = (𝐵 /L 𝑁))
21oveq1d 5884 . . . . . . . 8 (𝑥 = 𝐵 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
32eqeq2d 2189 . . . . . . 7 (𝑥 = 𝐵 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁))))
4 id 19 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
5 nn0z 9262 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 lgscl 14082 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℤ)
74, 5, 6syl2anr 290 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℤ)
87zcnd 9365 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℂ)
98adantr 276 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (𝑥 /L 𝑁) ∈ ℂ)
109mul01d 8340 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · 0) = 0)
11 simpr 110 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = 0)
1211oveq2d 5885 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝑥 /L 𝑁) · 0))
1310, 12, 113eqtr4rd 2221 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
14 0z 9253 . . . . . . . . . . . . . . 15 0 ∈ ℤ
155adantr 276 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
16 lgsne0 14106 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1))
1714, 15, 16sylancr 414 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1))
18 gcdcom 11957 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 𝑁) = (𝑁 gcd 0))
1914, 15, 18sylancr 414 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 gcd 𝑁) = (𝑁 gcd 0))
20 nn0gcdid0 11965 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 gcd 0) = 𝑁)
2120adantr 276 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑁 gcd 0) = 𝑁)
2219, 21eqtrd 2210 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 gcd 𝑁) = 𝑁)
2322eqeq1d 2186 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 gcd 𝑁) = 1 ↔ 𝑁 = 1))
24 lgs1 14112 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (𝑥 /L 1) = 1)
2524adantl 277 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 1) = 1)
26 oveq2 5877 . . . . . . . . . . . . . . . . 17 (𝑁 = 1 → (𝑥 /L 𝑁) = (𝑥 /L 1))
2726eqeq1d 2186 . . . . . . . . . . . . . . . 16 (𝑁 = 1 → ((𝑥 /L 𝑁) = 1 ↔ (𝑥 /L 1) = 1))
2825, 27syl5ibrcom 157 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑁 = 1 → (𝑥 /L 𝑁) = 1))
2923, 28sylbid 150 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 gcd 𝑁) = 1 → (𝑥 /L 𝑁) = 1))
3017, 29sylbid 150 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 → (𝑥 /L 𝑁) = 1))
3130imp 124 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (𝑥 /L 𝑁) = 1)
3231oveq1d 5884 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = (1 · (0 /L 𝑁)))
335ad2antrr 488 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → 𝑁 ∈ ℤ)
34 lgscl 14082 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 /L 𝑁) ∈ ℤ)
3514, 33, 34sylancr 414 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) ∈ ℤ)
3635zcnd 9365 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) ∈ ℂ)
3736mulid2d 7966 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (1 · (0 /L 𝑁)) = (0 /L 𝑁))
3832, 37eqtr2d 2211 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
3914, 15, 34sylancr 414 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 /L 𝑁) ∈ ℤ)
40 zdceq 9317 . . . . . . . . . . . 12 (((0 /L 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (0 /L 𝑁) = 0)
4139, 14, 40sylancl 413 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → DECID (0 /L 𝑁) = 0)
42 dcne 2358 . . . . . . . . . . 11 (DECID (0 /L 𝑁) = 0 ↔ ((0 /L 𝑁) = 0 ∨ (0 /L 𝑁) ≠ 0))
4341, 42sylib 122 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) = 0 ∨ (0 /L 𝑁) ≠ 0))
4413, 38, 43mpjaodan 798 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
4544ralrimiva 2550 . . . . . . . 8 (𝑁 ∈ ℕ0 → ∀𝑥 ∈ ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
46453ad2ant3 1020 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ∀𝑥 ∈ ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
47 simp2 998 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
483, 46, 47rspcdva 2846 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
4948adantr 276 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
5053ad2ant3 1020 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
5114, 50, 34sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) ∈ ℤ)
5251zcnd 9365 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) ∈ ℂ)
5352adantr 276 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) ∈ ℂ)
54 lgscl 14082 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐵 /L 𝑁) ∈ ℤ)
5547, 50, 54syl2anc 411 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵 /L 𝑁) ∈ ℤ)
5655zcnd 9365 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵 /L 𝑁) ∈ ℂ)
5756adantr 276 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐵 /L 𝑁) ∈ ℂ)
5853, 57mulcomd 7969 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((0 /L 𝑁) · (𝐵 /L 𝑁)) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
5949, 58eqtr4d 2213 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) = ((0 /L 𝑁) · (𝐵 /L 𝑁)))
60 oveq1 5876 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
61 zcn 9247 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
62613ad2ant2 1019 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
6362mul02d 8339 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 · 𝐵) = 0)
6460, 63sylan9eqr 2232 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) = 0)
6564oveq1d 5884 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁))
66 simpr 110 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → 𝐴 = 0)
6766oveq1d 5884 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴 /L 𝑁) = (0 /L 𝑁))
6867oveq1d 5884 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((0 /L 𝑁) · (𝐵 /L 𝑁)))
6959, 65, 683eqtr4d 2220 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
70 oveq1 5876 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 /L 𝑁) = (𝐴 /L 𝑁))
7170oveq1d 5884 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
7271eqeq2d 2189 . . . . . 6 (𝑥 = 𝐴 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁))))
73 simp1 997 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
7472, 46, 73rspcdva 2846 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
7574adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
76 oveq2 5877 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
7773zcnd 9365 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
7877mul01d 8340 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 · 0) = 0)
7976, 78sylan9eqr 2232 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0)
8079oveq1d 5884 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁))
81 simpr 110 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → 𝐵 = 0)
8281oveq1d 5884 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (𝐵 /L 𝑁) = (0 /L 𝑁))
8382oveq2d 5885 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
8475, 80, 833eqtr4d 2220 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
8569, 84jaodan 797 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
86 neanior 2434 . . 3 ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∨ 𝐵 = 0))
87 lgsdir 14103 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
885, 87syl3anl3 1288 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
8986, 88sylan2br 288 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
90 zdceq 9317 . . . . 5 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 = 0)
9173, 14, 90sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → DECID 𝐴 = 0)
92 zdceq 9317 . . . . 5 ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0)
9347, 14, 92sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → DECID 𝐵 = 0)
94 dcor 935 . . . 4 (DECID 𝐴 = 0 → (DECID 𝐵 = 0 → DECID (𝐴 = 0 ∨ 𝐵 = 0)))
9591, 93, 94sylc 62 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → DECID (𝐴 = 0 ∨ 𝐵 = 0))
96 exmiddc 836 . . 3 (DECID (𝐴 = 0 ∨ 𝐵 = 0) → ((𝐴 = 0 ∨ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
9795, 96syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 = 0 ∨ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
9885, 89, 97mpjaodan 798 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  w3a 978   = wceq 1353  wcel 2148  wne 2347  wral 2455  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   · cmul 7807  0cn0 9165  cz 9242   gcd cgcd 11926   /L clgs 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-9 8974  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194  df-pc 12268  df-lgs 14066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator