ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirnn0 GIF version

Theorem lgsdirnn0 15163
Description: Variation on lgsdir 15151 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdirnn0 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))

Proof of Theorem lgsdirnn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5925 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥 /L 𝑁) = (𝐵 /L 𝑁))
21oveq1d 5933 . . . . . . . 8 (𝑥 = 𝐵 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
32eqeq2d 2205 . . . . . . 7 (𝑥 = 𝐵 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁))))
4 id 19 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
5 nn0z 9337 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 lgscl 15130 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℤ)
74, 5, 6syl2anr 290 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℤ)
87zcnd 9440 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℂ)
98adantr 276 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (𝑥 /L 𝑁) ∈ ℂ)
109mul01d 8412 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · 0) = 0)
11 simpr 110 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = 0)
1211oveq2d 5934 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝑥 /L 𝑁) · 0))
1310, 12, 113eqtr4rd 2237 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
14 0z 9328 . . . . . . . . . . . . . . 15 0 ∈ ℤ
155adantr 276 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
16 lgsne0 15154 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1))
1714, 15, 16sylancr 414 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1))
18 gcdcom 12110 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 𝑁) = (𝑁 gcd 0))
1914, 15, 18sylancr 414 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 gcd 𝑁) = (𝑁 gcd 0))
20 nn0gcdid0 12118 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 gcd 0) = 𝑁)
2120adantr 276 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑁 gcd 0) = 𝑁)
2219, 21eqtrd 2226 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 gcd 𝑁) = 𝑁)
2322eqeq1d 2202 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 gcd 𝑁) = 1 ↔ 𝑁 = 1))
24 lgs1 15160 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (𝑥 /L 1) = 1)
2524adantl 277 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 1) = 1)
26 oveq2 5926 . . . . . . . . . . . . . . . . 17 (𝑁 = 1 → (𝑥 /L 𝑁) = (𝑥 /L 1))
2726eqeq1d 2202 . . . . . . . . . . . . . . . 16 (𝑁 = 1 → ((𝑥 /L 𝑁) = 1 ↔ (𝑥 /L 1) = 1))
2825, 27syl5ibrcom 157 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑁 = 1 → (𝑥 /L 𝑁) = 1))
2923, 28sylbid 150 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 gcd 𝑁) = 1 → (𝑥 /L 𝑁) = 1))
3017, 29sylbid 150 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 → (𝑥 /L 𝑁) = 1))
3130imp 124 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (𝑥 /L 𝑁) = 1)
3231oveq1d 5933 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = (1 · (0 /L 𝑁)))
335ad2antrr 488 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → 𝑁 ∈ ℤ)
34 lgscl 15130 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 /L 𝑁) ∈ ℤ)
3514, 33, 34sylancr 414 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) ∈ ℤ)
3635zcnd 9440 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) ∈ ℂ)
3736mulid2d 8038 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (1 · (0 /L 𝑁)) = (0 /L 𝑁))
3832, 37eqtr2d 2227 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
3914, 15, 34sylancr 414 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 /L 𝑁) ∈ ℤ)
40 zdceq 9392 . . . . . . . . . . . 12 (((0 /L 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (0 /L 𝑁) = 0)
4139, 14, 40sylancl 413 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → DECID (0 /L 𝑁) = 0)
42 dcne 2375 . . . . . . . . . . 11 (DECID (0 /L 𝑁) = 0 ↔ ((0 /L 𝑁) = 0 ∨ (0 /L 𝑁) ≠ 0))
4341, 42sylib 122 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) = 0 ∨ (0 /L 𝑁) ≠ 0))
4413, 38, 43mpjaodan 799 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
4544ralrimiva 2567 . . . . . . . 8 (𝑁 ∈ ℕ0 → ∀𝑥 ∈ ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
46453ad2ant3 1022 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ∀𝑥 ∈ ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
47 simp2 1000 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
483, 46, 47rspcdva 2869 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
4948adantr 276 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
5053ad2ant3 1022 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
5114, 50, 34sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) ∈ ℤ)
5251zcnd 9440 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) ∈ ℂ)
5352adantr 276 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) ∈ ℂ)
54 lgscl 15130 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐵 /L 𝑁) ∈ ℤ)
5547, 50, 54syl2anc 411 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵 /L 𝑁) ∈ ℤ)
5655zcnd 9440 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵 /L 𝑁) ∈ ℂ)
5756adantr 276 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐵 /L 𝑁) ∈ ℂ)
5853, 57mulcomd 8041 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((0 /L 𝑁) · (𝐵 /L 𝑁)) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
5949, 58eqtr4d 2229 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) = ((0 /L 𝑁) · (𝐵 /L 𝑁)))
60 oveq1 5925 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
61 zcn 9322 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
62613ad2ant2 1021 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
6362mul02d 8411 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 · 𝐵) = 0)
6460, 63sylan9eqr 2248 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) = 0)
6564oveq1d 5933 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁))
66 simpr 110 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → 𝐴 = 0)
6766oveq1d 5933 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴 /L 𝑁) = (0 /L 𝑁))
6867oveq1d 5933 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((0 /L 𝑁) · (𝐵 /L 𝑁)))
6959, 65, 683eqtr4d 2236 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
70 oveq1 5925 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 /L 𝑁) = (𝐴 /L 𝑁))
7170oveq1d 5933 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
7271eqeq2d 2205 . . . . . 6 (𝑥 = 𝐴 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁))))
73 simp1 999 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
7472, 46, 73rspcdva 2869 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
7574adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
76 oveq2 5926 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
7773zcnd 9440 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
7877mul01d 8412 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 · 0) = 0)
7976, 78sylan9eqr 2248 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0)
8079oveq1d 5933 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁))
81 simpr 110 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → 𝐵 = 0)
8281oveq1d 5933 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (𝐵 /L 𝑁) = (0 /L 𝑁))
8382oveq2d 5934 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
8475, 80, 833eqtr4d 2236 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
8569, 84jaodan 798 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
86 neanior 2451 . . 3 ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∨ 𝐵 = 0))
87 lgsdir 15151 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
885, 87syl3anl3 1299 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
8986, 88sylan2br 288 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
90 zdceq 9392 . . . . 5 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 = 0)
9173, 14, 90sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → DECID 𝐴 = 0)
92 zdceq 9392 . . . . 5 ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0)
9347, 14, 92sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → DECID 𝐵 = 0)
94 dcor 937 . . . 4 (DECID 𝐴 = 0 → (DECID 𝐵 = 0 → DECID (𝐴 = 0 ∨ 𝐵 = 0)))
9591, 93, 94sylc 62 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → DECID (𝐴 = 0 ∨ 𝐵 = 0))
96 exmiddc 837 . . 3 (DECID (𝐴 = 0 ∨ 𝐵 = 0) → ((𝐴 = 0 ∨ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
9795, 96syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 = 0 ∨ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
9885, 89, 97mpjaodan 799 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wne 2364  wral 2472  (class class class)co 5918  cc 7870  0cc0 7872  1c1 7873   · cmul 7877  0cn0 9240  cz 9317   gcd cgcd 12079   /L clgs 15113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-phi 12349  df-pc 12423  df-lgs 15114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator