ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirnn0 GIF version

Theorem lgsdirnn0 15734
Description: Variation on lgsdir 15722 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdirnn0 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))

Proof of Theorem lgsdirnn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6014 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥 /L 𝑁) = (𝐵 /L 𝑁))
21oveq1d 6022 . . . . . . . 8 (𝑥 = 𝐵 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
32eqeq2d 2241 . . . . . . 7 (𝑥 = 𝐵 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁))))
4 id 19 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
5 nn0z 9474 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 lgscl 15701 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℤ)
74, 5, 6syl2anr 290 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℤ)
87zcnd 9578 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℂ)
98adantr 276 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (𝑥 /L 𝑁) ∈ ℂ)
109mul01d 8547 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · 0) = 0)
11 simpr 110 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = 0)
1211oveq2d 6023 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝑥 /L 𝑁) · 0))
1310, 12, 113eqtr4rd 2273 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
14 0z 9465 . . . . . . . . . . . . . . 15 0 ∈ ℤ
155adantr 276 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
16 lgsne0 15725 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1))
1714, 15, 16sylancr 414 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1))
18 gcdcom 12502 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 𝑁) = (𝑁 gcd 0))
1914, 15, 18sylancr 414 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 gcd 𝑁) = (𝑁 gcd 0))
20 nn0gcdid0 12510 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 gcd 0) = 𝑁)
2120adantr 276 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑁 gcd 0) = 𝑁)
2219, 21eqtrd 2262 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 gcd 𝑁) = 𝑁)
2322eqeq1d 2238 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 gcd 𝑁) = 1 ↔ 𝑁 = 1))
24 lgs1 15731 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (𝑥 /L 1) = 1)
2524adantl 277 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 1) = 1)
26 oveq2 6015 . . . . . . . . . . . . . . . . 17 (𝑁 = 1 → (𝑥 /L 𝑁) = (𝑥 /L 1))
2726eqeq1d 2238 . . . . . . . . . . . . . . . 16 (𝑁 = 1 → ((𝑥 /L 𝑁) = 1 ↔ (𝑥 /L 1) = 1))
2825, 27syl5ibrcom 157 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑁 = 1 → (𝑥 /L 𝑁) = 1))
2923, 28sylbid 150 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 gcd 𝑁) = 1 → (𝑥 /L 𝑁) = 1))
3017, 29sylbid 150 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 → (𝑥 /L 𝑁) = 1))
3130imp 124 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (𝑥 /L 𝑁) = 1)
3231oveq1d 6022 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = (1 · (0 /L 𝑁)))
335ad2antrr 488 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → 𝑁 ∈ ℤ)
34 lgscl 15701 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 /L 𝑁) ∈ ℤ)
3514, 33, 34sylancr 414 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) ∈ ℤ)
3635zcnd 9578 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) ∈ ℂ)
3736mulid2d 8173 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (1 · (0 /L 𝑁)) = (0 /L 𝑁))
3832, 37eqtr2d 2263 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
3914, 15, 34sylancr 414 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 /L 𝑁) ∈ ℤ)
40 zdceq 9530 . . . . . . . . . . . 12 (((0 /L 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (0 /L 𝑁) = 0)
4139, 14, 40sylancl 413 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → DECID (0 /L 𝑁) = 0)
42 dcne 2411 . . . . . . . . . . 11 (DECID (0 /L 𝑁) = 0 ↔ ((0 /L 𝑁) = 0 ∨ (0 /L 𝑁) ≠ 0))
4341, 42sylib 122 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) = 0 ∨ (0 /L 𝑁) ≠ 0))
4413, 38, 43mpjaodan 803 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
4544ralrimiva 2603 . . . . . . . 8 (𝑁 ∈ ℕ0 → ∀𝑥 ∈ ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
46453ad2ant3 1044 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ∀𝑥 ∈ ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
47 simp2 1022 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
483, 46, 47rspcdva 2912 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
4948adantr 276 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
5053ad2ant3 1044 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
5114, 50, 34sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) ∈ ℤ)
5251zcnd 9578 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) ∈ ℂ)
5352adantr 276 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) ∈ ℂ)
54 lgscl 15701 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐵 /L 𝑁) ∈ ℤ)
5547, 50, 54syl2anc 411 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵 /L 𝑁) ∈ ℤ)
5655zcnd 9578 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵 /L 𝑁) ∈ ℂ)
5756adantr 276 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐵 /L 𝑁) ∈ ℂ)
5853, 57mulcomd 8176 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((0 /L 𝑁) · (𝐵 /L 𝑁)) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
5949, 58eqtr4d 2265 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) = ((0 /L 𝑁) · (𝐵 /L 𝑁)))
60 oveq1 6014 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
61 zcn 9459 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
62613ad2ant2 1043 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
6362mul02d 8546 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 · 𝐵) = 0)
6460, 63sylan9eqr 2284 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) = 0)
6564oveq1d 6022 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁))
66 simpr 110 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → 𝐴 = 0)
6766oveq1d 6022 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴 /L 𝑁) = (0 /L 𝑁))
6867oveq1d 6022 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((0 /L 𝑁) · (𝐵 /L 𝑁)))
6959, 65, 683eqtr4d 2272 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
70 oveq1 6014 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 /L 𝑁) = (𝐴 /L 𝑁))
7170oveq1d 6022 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
7271eqeq2d 2241 . . . . . 6 (𝑥 = 𝐴 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁))))
73 simp1 1021 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
7472, 46, 73rspcdva 2912 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
7574adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
76 oveq2 6015 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
7773zcnd 9578 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
7877mul01d 8547 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 · 0) = 0)
7976, 78sylan9eqr 2284 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0)
8079oveq1d 6022 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁))
81 simpr 110 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → 𝐵 = 0)
8281oveq1d 6022 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (𝐵 /L 𝑁) = (0 /L 𝑁))
8382oveq2d 6023 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
8475, 80, 833eqtr4d 2272 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
8569, 84jaodan 802 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
86 neanior 2487 . . 3 ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∨ 𝐵 = 0))
87 lgsdir 15722 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
885, 87syl3anl3 1321 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
8986, 88sylan2br 288 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
90 zdceq 9530 . . . . 5 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 = 0)
9173, 14, 90sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → DECID 𝐴 = 0)
92 zdceq 9530 . . . . 5 ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0)
9347, 14, 92sylancl 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → DECID 𝐵 = 0)
94 dcor 941 . . . 4 (DECID 𝐴 = 0 → (DECID 𝐵 = 0 → DECID (𝐴 = 0 ∨ 𝐵 = 0)))
9591, 93, 94sylc 62 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → DECID (𝐴 = 0 ∨ 𝐵 = 0))
96 exmiddc 841 . . 3 (DECID (𝐴 = 0 ∨ 𝐵 = 0) → ((𝐴 = 0 ∨ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
9795, 96syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 = 0 ∨ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
9885, 89, 97mpjaodan 803 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wne 2400  wral 2508  (class class class)co 6007  cc 8005  0cc0 8007  1c1 8008   · cmul 8012  0cn0 9377  cz 9454   gcd cgcd 12482   /L clgs 15684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070  df-dvds 12307  df-gcd 12483  df-prm 12638  df-phi 12741  df-pc 12816  df-lgs 15685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator