Step | Hyp | Ref
| Expression |
1 | | oveq1 5860 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝑥 /L 𝑁) = (𝐵 /L 𝑁)) |
2 | 1 | oveq1d 5868 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐵 /L 𝑁) · (0 /L 𝑁))) |
3 | 2 | eqeq2d 2182 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0
/L 𝑁) =
((𝐵 /L
𝑁) · (0
/L 𝑁)))) |
4 | | id 19 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℤ) |
5 | | nn0z 9232 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
6 | | lgscl 13709 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 /L 𝑁) ∈
ℤ) |
7 | 4, 5, 6 | syl2anr 288 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝑥
/L 𝑁)
∈ ℤ) |
8 | 7 | zcnd 9335 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝑥
/L 𝑁)
∈ ℂ) |
9 | 8 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) = 0) → (𝑥 /L 𝑁) ∈ ℂ) |
10 | 9 | mul01d 8312 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · 0) = 0) |
11 | | simpr 109 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = 0) |
12 | 11 | oveq2d 5869 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝑥 /L 𝑁) · 0)) |
13 | 10, 12, 11 | 3eqtr4rd 2214 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁))) |
14 | | 0z 9223 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℤ |
15 | 5 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ 𝑁 ∈
ℤ) |
16 | | lgsne0 13733 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1)) |
17 | 14, 15, 16 | sylancr 412 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1)) |
18 | | gcdcom 11928 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → (0 gcd 𝑁) = (𝑁 gcd 0)) |
19 | 14, 15, 18 | sylancr 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (0 gcd 𝑁) = (𝑁 gcd 0)) |
20 | | nn0gcdid0 11936 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (𝑁 gcd 0) = 𝑁) |
21 | 20 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝑁 gcd 0) = 𝑁) |
22 | 19, 21 | eqtrd 2203 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (0 gcd 𝑁) = 𝑁) |
23 | 22 | eqeq1d 2179 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ ((0 gcd 𝑁) = 1
↔ 𝑁 =
1)) |
24 | | lgs1 13739 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℤ → (𝑥 /L 1) =
1) |
25 | 24 | adantl 275 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝑥
/L 1) = 1) |
26 | | oveq2 5861 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 = 1 → (𝑥 /L 𝑁) = (𝑥 /L 1)) |
27 | 26 | eqeq1d 2179 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 = 1 → ((𝑥 /L 𝑁) = 1 ↔ (𝑥 /L 1) =
1)) |
28 | 25, 27 | syl5ibrcom 156 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (𝑁 = 1 → (𝑥 /L 𝑁) = 1)) |
29 | 23, 28 | sylbid 149 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ ((0 gcd 𝑁) = 1
→ (𝑥
/L 𝑁) =
1)) |
30 | 17, 29 | sylbid 149 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ ((0 /L 𝑁) ≠ 0 → (𝑥 /L 𝑁) = 1)) |
31 | 30 | imp 123 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) ≠ 0) → (𝑥 /L 𝑁) = 1) |
32 | 31 | oveq1d 5868 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) ≠ 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = (1 · (0
/L 𝑁))) |
33 | 5 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) ≠ 0) → 𝑁 ∈ ℤ) |
34 | | lgscl 13709 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → (0 /L 𝑁) ∈ ℤ) |
35 | 14, 33, 34 | sylancr 412 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) ≠ 0) → (0 /L
𝑁) ∈
ℤ) |
36 | 35 | zcnd 9335 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) ≠ 0) → (0 /L
𝑁) ∈
ℂ) |
37 | 36 | mulid2d 7938 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) ≠ 0) → (1 · (0
/L 𝑁)) =
(0 /L 𝑁)) |
38 | 32, 37 | eqtr2d 2204 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
∧ (0 /L 𝑁) ≠ 0) → (0 /L
𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁))) |
39 | 14, 15, 34 | sylancr 412 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (0 /L 𝑁) ∈ ℤ) |
40 | | zdceq 9287 |
. . . . . . . . . . . 12
⊢ (((0
/L 𝑁)
∈ ℤ ∧ 0 ∈ ℤ) → DECID (0
/L 𝑁) =
0) |
41 | 39, 14, 40 | sylancl 411 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ DECID (0 /L 𝑁) = 0) |
42 | | dcne 2351 |
. . . . . . . . . . 11
⊢
(DECID (0 /L 𝑁) = 0 ↔ ((0 /L 𝑁) = 0 ∨ (0
/L 𝑁)
≠ 0)) |
43 | 41, 42 | sylib 121 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ ((0 /L 𝑁) = 0 ∨ (0 /L 𝑁) ≠ 0)) |
44 | 13, 38, 43 | mpjaodan 793 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁))) |
45 | 44 | ralrimiva 2543 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ∀𝑥 ∈
ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁))) |
46 | 45 | 3ad2ant3 1015 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ ∀𝑥 ∈
ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁))) |
47 | | simp2 993 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ 𝐵 ∈
ℤ) |
48 | 3, 46, 47 | rspcdva 2839 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁))) |
49 | 48 | adantr 274 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐴 = 0) → (0
/L 𝑁) =
((𝐵 /L
𝑁) · (0
/L 𝑁))) |
50 | 5 | 3ad2ant3 1015 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
51 | 14, 50, 34 | sylancr 412 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ (0 /L 𝑁) ∈ ℤ) |
52 | 51 | zcnd 9335 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ (0 /L 𝑁) ∈ ℂ) |
53 | 52 | adantr 274 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐴 = 0) → (0
/L 𝑁)
∈ ℂ) |
54 | | lgscl 13709 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐵 /L 𝑁) ∈
ℤ) |
55 | 47, 50, 54 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ (𝐵
/L 𝑁)
∈ ℤ) |
56 | 55 | zcnd 9335 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ (𝐵
/L 𝑁)
∈ ℂ) |
57 | 56 | adantr 274 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐴 = 0) → (𝐵 /L 𝑁) ∈
ℂ) |
58 | 53, 57 | mulcomd 7941 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐴 = 0) → ((0
/L 𝑁)
· (𝐵
/L 𝑁)) =
((𝐵 /L
𝑁) · (0
/L 𝑁))) |
59 | 49, 58 | eqtr4d 2206 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐴 = 0) → (0
/L 𝑁) =
((0 /L 𝑁)
· (𝐵
/L 𝑁))) |
60 | | oveq1 5860 |
. . . . . 6
⊢ (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵)) |
61 | | zcn 9217 |
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
62 | 61 | 3ad2ant2 1014 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ 𝐵 ∈
ℂ) |
63 | 62 | mul02d 8311 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ (0 · 𝐵) =
0) |
64 | 60, 63 | sylan9eqr 2225 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐴 = 0) → (𝐴 · 𝐵) = 0) |
65 | 64 | oveq1d 5868 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁)) |
66 | | simpr 109 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐴 = 0) → 𝐴 = 0) |
67 | 66 | oveq1d 5868 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐴 = 0) → (𝐴 /L 𝑁) = (0 /L
𝑁)) |
68 | 67 | oveq1d 5868 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐴 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((0 /L 𝑁) · (𝐵 /L 𝑁))) |
69 | 59, 65, 68 | 3eqtr4d 2213 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) |
70 | | oveq1 5860 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 /L 𝑁) = (𝐴 /L 𝑁)) |
71 | 70 | oveq1d 5868 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁))) |
72 | 71 | eqeq2d 2182 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0
/L 𝑁) =
((𝐴 /L
𝑁) · (0
/L 𝑁)))) |
73 | | simp1 992 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ 𝐴 ∈
ℤ) |
74 | 72, 46, 73 | rspcdva 2839 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁))) |
75 | 74 | adantr 274 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐵 = 0) → (0
/L 𝑁) =
((𝐴 /L
𝑁) · (0
/L 𝑁))) |
76 | | oveq2 5861 |
. . . . . 6
⊢ (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0)) |
77 | 73 | zcnd 9335 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
78 | 77 | mul01d 8312 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ (𝐴 · 0) =
0) |
79 | 76, 78 | sylan9eqr 2225 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0) |
80 | 79 | oveq1d 5868 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁)) |
81 | | simpr 109 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐵 = 0) → 𝐵 = 0) |
82 | 81 | oveq1d 5868 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐵 = 0) → (𝐵 /L 𝑁) = (0 /L
𝑁)) |
83 | 82 | oveq2d 5869 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐵 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁))) |
84 | 75, 80, 83 | 3eqtr4d 2213 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) |
85 | 69, 84 | jaodan 792 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ (𝐴 = 0 ∨ 𝐵 = 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) |
86 | | neanior 2427 |
. . 3
⊢ ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
87 | | lgsdir 13730 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) |
88 | 5, 87 | syl3anl3 1283 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) |
89 | 86, 88 | sylan2br 286 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
∧ ¬ (𝐴 = 0 ∨
𝐵 = 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) |
90 | | zdceq 9287 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝐴 = 0) |
91 | 73, 14, 90 | sylancl 411 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ DECID 𝐴 = 0) |
92 | | zdceq 9287 |
. . . . 5
⊢ ((𝐵 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝐵 = 0) |
93 | 47, 14, 92 | sylancl 411 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ DECID 𝐵 = 0) |
94 | | dcor 930 |
. . . 4
⊢
(DECID 𝐴 = 0 → (DECID 𝐵 = 0 → DECID
(𝐴 = 0 ∨ 𝐵 = 0))) |
95 | 91, 93, 94 | sylc 62 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ DECID (𝐴 = 0 ∨ 𝐵 = 0)) |
96 | | exmiddc 831 |
. . 3
⊢
(DECID (𝐴 = 0 ∨ 𝐵 = 0) → ((𝐴 = 0 ∨ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∨ 𝐵 = 0))) |
97 | 95, 96 | syl 14 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 = 0 ∨ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∨ 𝐵 = 0))) |
98 | 85, 89, 97 | mpjaodan 793 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) |