| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifpr | GIF version | ||
| Description: Membership in a set with two elements removed. Similar to eldifsn 3795 and eldiftp 3712. (Contributed by Mario Carneiro, 18-Jul-2017.) |
| Ref | Expression |
|---|---|
| eldifpr | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg 3686 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
| 2 | 1 | notbid 671 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ ¬ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
| 3 | neanior 2487 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) | |
| 4 | 2, 3 | bitr4di 198 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
| 5 | 4 | pm5.32i 454 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
| 6 | eldif 3206 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷})) | |
| 7 | 3anass 1006 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) | |
| 8 | 5, 6, 7 | 3bitr4i 212 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∖ cdif 3194 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: rexdifpr 3694 rplogbval 15619 |
| Copyright terms: Public domain | W3C validator |