ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelprd GIF version

Theorem nelprd 3553
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Hypotheses
Ref Expression
nelprd.1 (𝜑𝐴𝐵)
nelprd.2 (𝜑𝐴𝐶)
Assertion
Ref Expression
nelprd (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶})

Proof of Theorem nelprd
StepHypRef Expression
1 nelprd.1 . 2 (𝜑𝐴𝐵)
2 nelprd.2 . 2 (𝜑𝐴𝐶)
3 neanior 2395 . . 3 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶))
4 elpri 3550 . . . 4 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
54con3i 621 . . 3 (¬ (𝐴 = 𝐵𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
63, 5sylbi 120 . 2 ((𝐴𝐵𝐴𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
71, 2, 6syl2anc 408 1 (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697   = wceq 1331  wcel 1480  wne 2308  {cpr 3528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534
This theorem is referenced by:  tpfidisj  6816  sumtp  11190
  Copyright terms: Public domain W3C validator