Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nelpri | GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
nelpri.1 | ⊢ 𝐴 ≠ 𝐵 |
nelpri.2 | ⊢ 𝐴 ≠ 𝐶 |
Ref | Expression |
---|---|
nelpri | ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelpri.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | nelpri.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
3 | neanior 2423 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
4 | elpri 3599 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
5 | 4 | con3i 622 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
6 | 3, 5 | sylbi 120 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
7 | 1, 2, 6 | mp2an 423 | 1 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: prneli 3601 pw1nel3 7187 sucpw1nel3 7189 |
Copyright terms: Public domain | W3C validator |