ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelpri GIF version

Theorem nelpri 3584
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.)
Hypotheses
Ref Expression
nelpri.1 𝐴𝐵
nelpri.2 𝐴𝐶
Assertion
Ref Expression
nelpri ¬ 𝐴 ∈ {𝐵, 𝐶}

Proof of Theorem nelpri
StepHypRef Expression
1 nelpri.1 . 2 𝐴𝐵
2 nelpri.2 . 2 𝐴𝐶
3 neanior 2414 . . 3 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶))
4 elpri 3583 . . . 4 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
54con3i 622 . . 3 (¬ (𝐴 = 𝐵𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
63, 5sylbi 120 . 2 ((𝐴𝐵𝐴𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
71, 2, 6mp2an 423 1 ¬ 𝐴 ∈ {𝐵, 𝐶}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wo 698   = wceq 1335  wcel 2128  wne 2327  {cpr 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567
This theorem is referenced by:  prneli  3585  pw1nel3  7166  sucpw1nel3  7168
  Copyright terms: Public domain W3C validator