| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nelpri | GIF version | ||
| Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| nelpri.1 | ⊢ 𝐴 ≠ 𝐵 |
| nelpri.2 | ⊢ 𝐴 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| nelpri | ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelpri.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | nelpri.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
| 3 | neanior 2462 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 4 | elpri 3655 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 5 | 4 | con3i 633 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 6 | 3, 5 | sylbi 121 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 7 | 1, 2, 6 | mp2an 426 | 1 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 {cpr 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 |
| This theorem is referenced by: prneli 3657 pw1nel3 7342 sucpw1nel3 7344 |
| Copyright terms: Public domain | W3C validator |