ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelpri GIF version

Theorem nelpri 3600
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.)
Hypotheses
Ref Expression
nelpri.1 𝐴𝐵
nelpri.2 𝐴𝐶
Assertion
Ref Expression
nelpri ¬ 𝐴 ∈ {𝐵, 𝐶}

Proof of Theorem nelpri
StepHypRef Expression
1 nelpri.1 . 2 𝐴𝐵
2 nelpri.2 . 2 𝐴𝐶
3 neanior 2423 . . 3 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶))
4 elpri 3599 . . . 4 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
54con3i 622 . . 3 (¬ (𝐴 = 𝐵𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
63, 5sylbi 120 . 2 ((𝐴𝐵𝐴𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
71, 2, 6mp2an 423 1 ¬ 𝐴 ∈ {𝐵, 𝐶}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wo 698   = wceq 1343  wcel 2136  wne 2336  {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by:  prneli  3601  pw1nel3  7187  sucpw1nel3  7189
  Copyright terms: Public domain W3C validator