| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nelpri | GIF version | ||
| Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| nelpri.1 | ⊢ 𝐴 ≠ 𝐵 |
| nelpri.2 | ⊢ 𝐴 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| nelpri | ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelpri.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | nelpri.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
| 3 | neanior 2487 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 4 | elpri 3689 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 5 | 4 | con3i 635 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 6 | 3, 5 | sylbi 121 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 7 | 1, 2, 6 | mp2an 426 | 1 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: prneli 3691 pw1nel3 7412 sucpw1nel3 7414 |
| Copyright terms: Public domain | W3C validator |