ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nemtbir GIF version

Theorem nemtbir 2465
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
Hypotheses
Ref Expression
nemtbir.1 𝐴𝐵
nemtbir.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
nemtbir ¬ 𝜑

Proof of Theorem nemtbir
StepHypRef Expression
1 nemtbir.1 . . 3 𝐴𝐵
2 df-ne 2377 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2mpbi 145 . 2 ¬ 𝐴 = 𝐵
4 nemtbir.2 . 2 (𝜑𝐴 = 𝐵)
53, 4mtbir 673 1 ¬ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1373  wne 2376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2377
This theorem is referenced by:  opthprc  4726  php5  6955  snnen2oprc  6957  djulclb  7157  ismkvnex  7257  sucpw1nel3  7345  m1exp1  12212  pwle2  15935
  Copyright terms: Public domain W3C validator