| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nemtbir | GIF version | ||
| Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.) | 
| Ref | Expression | 
|---|---|
| nemtbir.1 | ⊢ 𝐴 ≠ 𝐵 | 
| nemtbir.2 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| nemtbir | ⊢ ¬ 𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nemtbir.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | df-ne 2368 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | mpbi 145 | . 2 ⊢ ¬ 𝐴 = 𝐵 | 
| 4 | nemtbir.2 | . 2 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
| 5 | 3, 4 | mtbir 672 | 1 ⊢ ¬ 𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ↔ wb 105 = wceq 1364 ≠ wne 2367 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-ne 2368 | 
| This theorem is referenced by: opthprc 4714 php5 6919 snnen2oprc 6921 djulclb 7121 ismkvnex 7221 sucpw1nel3 7300 m1exp1 12066 pwle2 15643 | 
| Copyright terms: Public domain | W3C validator |