ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nemtbir GIF version

Theorem nemtbir 2425
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
Hypotheses
Ref Expression
nemtbir.1 𝐴𝐵
nemtbir.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
nemtbir ¬ 𝜑

Proof of Theorem nemtbir
StepHypRef Expression
1 nemtbir.1 . . 3 𝐴𝐵
2 df-ne 2337 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2mpbi 144 . 2 ¬ 𝐴 = 𝐵
4 nemtbir.2 . 2 (𝜑𝐴 = 𝐵)
53, 4mtbir 661 1 ¬ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104   = wceq 1343  wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-ne 2337
This theorem is referenced by:  opthprc  4655  php5  6824  snnen2oprc  6826  djulclb  7020  ismkvnex  7119  sucpw1nel3  7189  m1exp1  11838  pwle2  13878
  Copyright terms: Public domain W3C validator