Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nemtbir | GIF version |
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
nemtbir.1 | ⊢ 𝐴 ≠ 𝐵 |
nemtbir.2 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
nemtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nemtbir.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | df-ne 2337 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | mpbi 144 | . 2 ⊢ ¬ 𝐴 = 𝐵 |
4 | nemtbir.2 | . 2 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
5 | 3, 4 | mtbir 661 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 = wceq 1343 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-ne 2337 |
This theorem is referenced by: opthprc 4655 php5 6824 snnen2oprc 6826 djulclb 7020 ismkvnex 7119 sucpw1nel3 7189 m1exp1 11838 pwle2 13878 |
Copyright terms: Public domain | W3C validator |