ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1exp1 GIF version

Theorem m1exp1 10994
Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
m1exp1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))

Proof of Theorem m1exp1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2z 8748 . . . . . . 7 2 ∈ ℤ
2 divides 10891 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
31, 2mpan 415 . . . . . 6 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
4 oveq2 5642 . . . . . . . . 9 (𝑁 = (𝑛 · 2) → (-1↑𝑁) = (-1↑(𝑛 · 2)))
54eqcoms 2091 . . . . . . . 8 ((𝑛 · 2) = 𝑁 → (-1↑𝑁) = (-1↑(𝑛 · 2)))
6 zcn 8725 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
7 2cnd 8466 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 2 ∈ ℂ)
86, 7mulcomd 7488 . . . . . . . . . 10 (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛))
98oveq2d 5650 . . . . . . . . 9 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = (-1↑(2 · 𝑛)))
10 m1expeven 9967 . . . . . . . . 9 (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1)
119, 10eqtrd 2120 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = 1)
125, 11sylan9eqr 2142 . . . . . . 7 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝑁) → (-1↑𝑁) = 1)
1312rexlimiva 2484 . . . . . 6 (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 → (-1↑𝑁) = 1)
143, 13syl6bi 161 . . . . 5 (𝑁 ∈ ℤ → (2 ∥ 𝑁 → (-1↑𝑁) = 1))
1514impcom 123 . . . 4 ((2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = 1)
16 simpl 107 . . . 4 ((2 ∥ 𝑁𝑁 ∈ ℤ) → 2 ∥ 𝑁)
1715, 162thd 173 . . 3 ((2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
1817expcom 114 . 2 (𝑁 ∈ ℤ → (2 ∥ 𝑁 → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁)))
19 1ne0 8461 . . . . . 6 1 ≠ 0
20 eqcom 2090 . . . . . . 7 (-1 = 1 ↔ 1 = -1)
21 ax-1cn 7417 . . . . . . . 8 1 ∈ ℂ
2221eqnegi 8182 . . . . . . 7 (1 = -1 ↔ 1 = 0)
2320, 22bitri 182 . . . . . 6 (-1 = 1 ↔ 1 = 0)
2419, 23nemtbir 2344 . . . . 5 ¬ -1 = 1
25 odd2np1 10966 . . . . . . . 8 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
26 oveq2 5642 . . . . . . . . . . 11 (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
2726eqcoms 2091 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
28 neg1cn 8498 . . . . . . . . . . . . 13 -1 ∈ ℂ
2928a1i 9 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → -1 ∈ ℂ)
30 neg1ap0 8502 . . . . . . . . . . . . 13 -1 # 0
3130a1i 9 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → -1 # 0)
321a1i 9 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ∈ ℤ)
33 id 19 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
3432, 33zmulcld 8844 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
3529, 31, 34expp1zapd 10060 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1))
3610oveq1d 5649 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1))
3728mulid2i 7470 . . . . . . . . . . . 12 (1 · -1) = -1
3836, 37syl6eq 2136 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1)
3935, 38eqtrd 2120 . . . . . . . . . 10 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1)
4027, 39sylan9eqr 2142 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1)
4140rexlimiva 2484 . . . . . . . 8 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)
4225, 41syl6bi 161 . . . . . . 7 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1))
4342impcom 123 . . . . . 6 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = -1)
4443eqeq1d 2096 . . . . 5 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ -1 = 1))
4524, 44mtbiri 635 . . . 4 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ (-1↑𝑁) = 1)
46 simpl 107 . . . 4 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ 2 ∥ 𝑁)
4745, 462falsed 653 . . 3 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
4847expcom 114 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁)))
49 zeo3 10961 . 2 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))
5018, 48, 49mpjaod 673 1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1289  wcel 1438  wrex 2360   class class class wbr 3837  (class class class)co 5634  cc 7327  0cc0 7329  1c1 7330   + caddc 7332   · cmul 7334  -cneg 7633   # cap 8034  2c2 8444  cz 8720  cexp 9919  cdvds 10889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-xor 1312  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-n0 8644  df-z 8721  df-uz 8989  df-iseq 9818  df-seq3 9819  df-exp 9920  df-dvds 10890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator