ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1exp1 GIF version

Theorem m1exp1 12131
Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
m1exp1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))

Proof of Theorem m1exp1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2z 9382 . . . . . . 7 2 ∈ ℤ
2 divides 12019 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
31, 2mpan 424 . . . . . 6 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
4 oveq2 5942 . . . . . . . . 9 (𝑁 = (𝑛 · 2) → (-1↑𝑁) = (-1↑(𝑛 · 2)))
54eqcoms 2207 . . . . . . . 8 ((𝑛 · 2) = 𝑁 → (-1↑𝑁) = (-1↑(𝑛 · 2)))
6 zcn 9359 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
7 2cnd 9091 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 2 ∈ ℂ)
86, 7mulcomd 8076 . . . . . . . . . 10 (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛))
98oveq2d 5950 . . . . . . . . 9 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = (-1↑(2 · 𝑛)))
10 m1expeven 10712 . . . . . . . . 9 (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1)
119, 10eqtrd 2237 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = 1)
125, 11sylan9eqr 2259 . . . . . . 7 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝑁) → (-1↑𝑁) = 1)
1312rexlimiva 2617 . . . . . 6 (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 → (-1↑𝑁) = 1)
143, 13biimtrdi 163 . . . . 5 (𝑁 ∈ ℤ → (2 ∥ 𝑁 → (-1↑𝑁) = 1))
1514impcom 125 . . . 4 ((2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = 1)
16 simpl 109 . . . 4 ((2 ∥ 𝑁𝑁 ∈ ℤ) → 2 ∥ 𝑁)
1715, 162thd 175 . . 3 ((2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
1817expcom 116 . 2 (𝑁 ∈ ℤ → (2 ∥ 𝑁 → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁)))
19 1ne0 9086 . . . . . 6 1 ≠ 0
20 eqcom 2206 . . . . . . 7 (-1 = 1 ↔ 1 = -1)
21 ax-1cn 8000 . . . . . . . 8 1 ∈ ℂ
2221eqnegi 8796 . . . . . . 7 (1 = -1 ↔ 1 = 0)
2320, 22bitri 184 . . . . . 6 (-1 = 1 ↔ 1 = 0)
2419, 23nemtbir 2464 . . . . 5 ¬ -1 = 1
25 odd2np1 12103 . . . . . . . 8 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
26 oveq2 5942 . . . . . . . . . . 11 (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
2726eqcoms 2207 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
28 neg1cn 9123 . . . . . . . . . . . . 13 -1 ∈ ℂ
2928a1i 9 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → -1 ∈ ℂ)
30 neg1ap0 9127 . . . . . . . . . . . . 13 -1 # 0
3130a1i 9 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → -1 # 0)
321a1i 9 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ∈ ℤ)
33 id 19 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
3432, 33zmulcld 9483 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
3529, 31, 34expp1zapd 10808 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1))
3610oveq1d 5949 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1))
3728mullidi 8057 . . . . . . . . . . . 12 (1 · -1) = -1
3836, 37eqtrdi 2253 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1)
3935, 38eqtrd 2237 . . . . . . . . . 10 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1)
4027, 39sylan9eqr 2259 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1)
4140rexlimiva 2617 . . . . . . . 8 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)
4225, 41biimtrdi 163 . . . . . . 7 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1))
4342impcom 125 . . . . . 6 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = -1)
4443eqeq1d 2213 . . . . 5 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ -1 = 1))
4524, 44mtbiri 676 . . . 4 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ (-1↑𝑁) = 1)
46 simpl 109 . . . 4 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ 2 ∥ 𝑁)
4745, 462falsed 703 . . 3 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
4847expcom 116 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁)))
49 zeo3 12098 . 2 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))
5018, 48, 49mpjaod 719 1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wrex 2484   class class class wbr 4043  (class class class)co 5934  cc 7905  0cc0 7907  1c1 7908   + caddc 7910   · cmul 7912  -cneg 8226   # cap 8636  2c2 9069  cz 9354  cexp 10664  cdvds 12017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-xor 1395  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-n0 9278  df-z 9355  df-uz 9631  df-seqfrec 10574  df-exp 10665  df-dvds 12018
This theorem is referenced by:  2lgs  15499  2lgsoddprm  15508
  Copyright terms: Public domain W3C validator