![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snnen2oprc | GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a set, see snnen2og 6915. (Contributed by Jim Kingdon, 1-Sep-2021.) |
Ref | Expression |
---|---|
snnen2oprc | ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on0 6479 | . . 3 ⊢ 2o ≠ ∅ | |
2 | ensymb 6834 | . . . 4 ⊢ (∅ ≈ 2o ↔ 2o ≈ ∅) | |
3 | en0 6849 | . . . 4 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
4 | 2, 3 | bitri 184 | . . 3 ⊢ (∅ ≈ 2o ↔ 2o = ∅) |
5 | 1, 4 | nemtbir 2453 | . 2 ⊢ ¬ ∅ ≈ 2o |
6 | snprc 3683 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
7 | 6 | biimpi 120 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
8 | 7 | breq1d 4039 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o)) |
9 | 5, 8 | mtbiri 676 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∅c0 3446 {csn 3618 class class class wbr 4029 2oc2o 6463 ≈ cen 6792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-1o 6469 df-2o 6470 df-er 6587 df-en 6795 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |