| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snnen2oprc | GIF version | ||
| Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a set, see snnen2og 6929. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| snnen2oprc | ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on0 6493 | . . 3 ⊢ 2o ≠ ∅ | |
| 2 | ensymb 6848 | . . . 4 ⊢ (∅ ≈ 2o ↔ 2o ≈ ∅) | |
| 3 | en0 6863 | . . . 4 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
| 4 | 2, 3 | bitri 184 | . . 3 ⊢ (∅ ≈ 2o ↔ 2o = ∅) |
| 5 | 1, 4 | nemtbir 2456 | . 2 ⊢ ¬ ∅ ≈ 2o |
| 6 | snprc 3688 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 8 | 7 | breq1d 4044 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o)) |
| 9 | 5, 8 | mtbiri 676 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∅c0 3451 {csn 3623 class class class wbr 4034 2oc2o 6477 ≈ cen 6806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-1o 6483 df-2o 6484 df-er 6601 df-en 6809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |