![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snnen2oprc | GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a set, see snnen2og 6917. (Contributed by Jim Kingdon, 1-Sep-2021.) |
Ref | Expression |
---|---|
snnen2oprc | ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on0 6481 | . . 3 ⊢ 2o ≠ ∅ | |
2 | ensymb 6836 | . . . 4 ⊢ (∅ ≈ 2o ↔ 2o ≈ ∅) | |
3 | en0 6851 | . . . 4 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
4 | 2, 3 | bitri 184 | . . 3 ⊢ (∅ ≈ 2o ↔ 2o = ∅) |
5 | 1, 4 | nemtbir 2453 | . 2 ⊢ ¬ ∅ ≈ 2o |
6 | snprc 3684 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
7 | 6 | biimpi 120 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
8 | 7 | breq1d 4040 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o)) |
9 | 5, 8 | mtbiri 676 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∅c0 3447 {csn 3619 class class class wbr 4030 2oc2o 6465 ≈ cen 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-1o 6471 df-2o 6472 df-er 6589 df-en 6797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |