Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snnen2oprc | GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a set, see snnen2og 6825. (Contributed by Jim Kingdon, 1-Sep-2021.) |
Ref | Expression |
---|---|
snnen2oprc | ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on0 6394 | . . 3 ⊢ 2o ≠ ∅ | |
2 | ensymb 6746 | . . . 4 ⊢ (∅ ≈ 2o ↔ 2o ≈ ∅) | |
3 | en0 6761 | . . . 4 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
4 | 2, 3 | bitri 183 | . . 3 ⊢ (∅ ≈ 2o ↔ 2o = ∅) |
5 | 1, 4 | nemtbir 2425 | . 2 ⊢ ¬ ∅ ≈ 2o |
6 | snprc 3641 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
7 | 6 | biimpi 119 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
8 | 7 | breq1d 3992 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o)) |
9 | 5, 8 | mtbiri 665 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∅c0 3409 {csn 3576 class class class wbr 3982 2oc2o 6378 ≈ cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |