| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snnen2oprc | GIF version | ||
| Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a set, see snnen2og 6956. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| snnen2oprc | ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on0 6512 | . . 3 ⊢ 2o ≠ ∅ | |
| 2 | ensymb 6872 | . . . 4 ⊢ (∅ ≈ 2o ↔ 2o ≈ ∅) | |
| 3 | en0 6887 | . . . 4 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
| 4 | 2, 3 | bitri 184 | . . 3 ⊢ (∅ ≈ 2o ↔ 2o = ∅) |
| 5 | 1, 4 | nemtbir 2465 | . 2 ⊢ ¬ ∅ ≈ 2o |
| 6 | snprc 3698 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 8 | 7 | breq1d 4054 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o)) |
| 9 | 5, 8 | mtbiri 677 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∅c0 3460 {csn 3633 class class class wbr 4044 2oc2o 6496 ≈ cen 6825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-1o 6502 df-2o 6503 df-er 6620 df-en 6828 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |