ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnen2oprc GIF version

Theorem snnen2oprc 6982
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a set, see snnen2og 6981. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
snnen2oprc 𝐴 ∈ V → ¬ {𝐴} ≈ 2o)

Proof of Theorem snnen2oprc
StepHypRef Expression
1 2on0 6535 . . 3 2o ≠ ∅
2 ensymb 6895 . . . 4 (∅ ≈ 2o ↔ 2o ≈ ∅)
3 en0 6910 . . . 4 (2o ≈ ∅ ↔ 2o = ∅)
42, 3bitri 184 . . 3 (∅ ≈ 2o ↔ 2o = ∅)
51, 4nemtbir 2467 . 2 ¬ ∅ ≈ 2o
6 snprc 3708 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
76biimpi 120 . . 3 𝐴 ∈ V → {𝐴} = ∅)
87breq1d 4069 . 2 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o))
95, 8mtbiri 677 1 𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2178  Vcvv 2776  c0 3468  {csn 3643   class class class wbr 4059  2oc2o 6519  cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator