ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnen2oprc GIF version

Theorem snnen2oprc 6826
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a set, see snnen2og 6825. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
snnen2oprc 𝐴 ∈ V → ¬ {𝐴} ≈ 2o)

Proof of Theorem snnen2oprc
StepHypRef Expression
1 2on0 6394 . . 3 2o ≠ ∅
2 ensymb 6746 . . . 4 (∅ ≈ 2o ↔ 2o ≈ ∅)
3 en0 6761 . . . 4 (2o ≈ ∅ ↔ 2o = ∅)
42, 3bitri 183 . . 3 (∅ ≈ 2o ↔ 2o = ∅)
51, 4nemtbir 2425 . 2 ¬ ∅ ≈ 2o
6 snprc 3641 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
76biimpi 119 . . 3 𝐴 ∈ V → {𝐴} = ∅)
87breq1d 3992 . 2 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o))
95, 8mtbiri 665 1 𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wcel 2136  Vcvv 2726  c0 3409  {csn 3576   class class class wbr 3982  2oc2o 6378  cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator