| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snnen2oprc | GIF version | ||
| Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a set, see snnen2og 6981. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| snnen2oprc | ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on0 6535 | . . 3 ⊢ 2o ≠ ∅ | |
| 2 | ensymb 6895 | . . . 4 ⊢ (∅ ≈ 2o ↔ 2o ≈ ∅) | |
| 3 | en0 6910 | . . . 4 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
| 4 | 2, 3 | bitri 184 | . . 3 ⊢ (∅ ≈ 2o ↔ 2o = ∅) |
| 5 | 1, 4 | nemtbir 2467 | . 2 ⊢ ¬ ∅ ≈ 2o |
| 6 | snprc 3708 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 7 | 6 | biimpi 120 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 8 | 7 | breq1d 4069 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o)) |
| 9 | 5, 8 | mtbiri 677 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∅c0 3468 {csn 3643 class class class wbr 4059 2oc2o 6519 ≈ cen 6848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-1o 6525 df-2o 6526 df-er 6643 df-en 6851 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |