ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclb GIF version

Theorem djulclb 7020
Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djulclb (𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))

Proof of Theorem djulclb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djulcl 7016 . 2 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
2 1n0 6400 . . . . . . . . . 10 1o ≠ ∅
32necomi 2421 . . . . . . . . 9 ∅ ≠ 1o
4 0ex 4109 . . . . . . . . . 10 ∅ ∈ V
54elsn 3592 . . . . . . . . 9 (∅ ∈ {1o} ↔ ∅ = 1o)
63, 5nemtbir 2425 . . . . . . . 8 ¬ ∅ ∈ {1o}
76intnanr 920 . . . . . . 7 ¬ (∅ ∈ {1o} ∧ 𝐶𝐵)
8 opelxp 4634 . . . . . . 7 (⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) ↔ (∅ ∈ {1o} ∧ 𝐶𝐵))
97, 8mtbir 661 . . . . . 6 ¬ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)
10 elex 2737 . . . . . . . . . . . 12 (𝐶𝑉𝐶 ∈ V)
11 opexg 4206 . . . . . . . . . . . . 13 ((∅ ∈ V ∧ 𝐶𝑉) → ⟨∅, 𝐶⟩ ∈ V)
124, 11mpan 421 . . . . . . . . . . . 12 (𝐶𝑉 → ⟨∅, 𝐶⟩ ∈ V)
13 opeq2 3759 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
14 df-inl 7012 . . . . . . . . . . . . 13 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
1513, 14fvmptg 5562 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ ⟨∅, 𝐶⟩ ∈ V) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
1610, 12, 15syl2anc 409 . . . . . . . . . . 11 (𝐶𝑉 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
1716adantr 274 . . . . . . . . . 10 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
18 df-dju 7003 . . . . . . . . . . . . 13 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1918eleq2i 2233 . . . . . . . . . . . 12 ((inl‘𝐶) ∈ (𝐴𝐵) ↔ (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2019biimpi 119 . . . . . . . . . . 11 ((inl‘𝐶) ∈ (𝐴𝐵) → (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2120adantl 275 . . . . . . . . . 10 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2217, 21eqeltrrd 2244 . . . . . . . . 9 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
23 elun 3263 . . . . . . . . 9 (⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ∨ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)))
2422, 23sylib 121 . . . . . . . 8 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ∨ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)))
2524orcomd 719 . . . . . . 7 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) ∨ ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)))
2625ord 714 . . . . . 6 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (¬ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)))
279, 26mpi 15 . . . . 5 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
28 opelxp 4634 . . . . 5 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ↔ (∅ ∈ {∅} ∧ 𝐶𝐴))
2927, 28sylib 121 . . . 4 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (∅ ∈ {∅} ∧ 𝐶𝐴))
3029simprd 113 . . 3 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → 𝐶𝐴)
3130ex 114 . 2 (𝐶𝑉 → ((inl‘𝐶) ∈ (𝐴𝐵) → 𝐶𝐴))
321, 31impbid2 142 1 (𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  Vcvv 2726  cun 3114  c0 3409  {csn 3576  cop 3579   × cxp 4602  cfv 5188  1oc1o 6377  cdju 7002  inlcinl 7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-1o 6384  df-dju 7003  df-inl 7012
This theorem is referenced by:  exmidfodomrlemr  7158
  Copyright terms: Public domain W3C validator