ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclb GIF version

Theorem djulclb 6948
Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djulclb (𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))

Proof of Theorem djulclb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djulcl 6944 . 2 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
2 1n0 6337 . . . . . . . . . 10 1o ≠ ∅
32necomi 2394 . . . . . . . . 9 ∅ ≠ 1o
4 0ex 4063 . . . . . . . . . 10 ∅ ∈ V
54elsn 3548 . . . . . . . . 9 (∅ ∈ {1o} ↔ ∅ = 1o)
63, 5nemtbir 2398 . . . . . . . 8 ¬ ∅ ∈ {1o}
76intnanr 916 . . . . . . 7 ¬ (∅ ∈ {1o} ∧ 𝐶𝐵)
8 opelxp 4577 . . . . . . 7 (⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) ↔ (∅ ∈ {1o} ∧ 𝐶𝐵))
97, 8mtbir 661 . . . . . 6 ¬ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)
10 elex 2700 . . . . . . . . . . . 12 (𝐶𝑉𝐶 ∈ V)
11 opexg 4158 . . . . . . . . . . . . 13 ((∅ ∈ V ∧ 𝐶𝑉) → ⟨∅, 𝐶⟩ ∈ V)
124, 11mpan 421 . . . . . . . . . . . 12 (𝐶𝑉 → ⟨∅, 𝐶⟩ ∈ V)
13 opeq2 3714 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
14 df-inl 6940 . . . . . . . . . . . . 13 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
1513, 14fvmptg 5505 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ ⟨∅, 𝐶⟩ ∈ V) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
1610, 12, 15syl2anc 409 . . . . . . . . . . 11 (𝐶𝑉 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
1716adantr 274 . . . . . . . . . 10 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
18 df-dju 6931 . . . . . . . . . . . . 13 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1918eleq2i 2207 . . . . . . . . . . . 12 ((inl‘𝐶) ∈ (𝐴𝐵) ↔ (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2019biimpi 119 . . . . . . . . . . 11 ((inl‘𝐶) ∈ (𝐴𝐵) → (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2120adantl 275 . . . . . . . . . 10 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2217, 21eqeltrrd 2218 . . . . . . . . 9 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
23 elun 3222 . . . . . . . . 9 (⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ∨ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)))
2422, 23sylib 121 . . . . . . . 8 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ∨ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)))
2524orcomd 719 . . . . . . 7 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) ∨ ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)))
2625ord 714 . . . . . 6 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (¬ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)))
279, 26mpi 15 . . . . 5 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
28 opelxp 4577 . . . . 5 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ↔ (∅ ∈ {∅} ∧ 𝐶𝐴))
2927, 28sylib 121 . . . 4 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (∅ ∈ {∅} ∧ 𝐶𝐴))
3029simprd 113 . . 3 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → 𝐶𝐴)
3130ex 114 . 2 (𝐶𝑉 → ((inl‘𝐶) ∈ (𝐴𝐵) → 𝐶𝐴))
321, 31impbid2 142 1 (𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wcel 1481  Vcvv 2689  cun 3074  c0 3368  {csn 3532  cop 3535   × cxp 4545  cfv 5131  1oc1o 6314  cdju 6930  inlcinl 6938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-1o 6321  df-dju 6931  df-inl 6940
This theorem is referenced by:  exmidfodomrlemr  7075
  Copyright terms: Public domain W3C validator