ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclb GIF version

Theorem djulclb 7032
Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djulclb (𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))

Proof of Theorem djulclb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djulcl 7028 . 2 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
2 1n0 6411 . . . . . . . . . 10 1o ≠ ∅
32necomi 2425 . . . . . . . . 9 ∅ ≠ 1o
4 0ex 4116 . . . . . . . . . 10 ∅ ∈ V
54elsn 3599 . . . . . . . . 9 (∅ ∈ {1o} ↔ ∅ = 1o)
63, 5nemtbir 2429 . . . . . . . 8 ¬ ∅ ∈ {1o}
76intnanr 925 . . . . . . 7 ¬ (∅ ∈ {1o} ∧ 𝐶𝐵)
8 opelxp 4641 . . . . . . 7 (⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) ↔ (∅ ∈ {1o} ∧ 𝐶𝐵))
97, 8mtbir 666 . . . . . 6 ¬ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)
10 elex 2741 . . . . . . . . . . . 12 (𝐶𝑉𝐶 ∈ V)
11 opexg 4213 . . . . . . . . . . . . 13 ((∅ ∈ V ∧ 𝐶𝑉) → ⟨∅, 𝐶⟩ ∈ V)
124, 11mpan 422 . . . . . . . . . . . 12 (𝐶𝑉 → ⟨∅, 𝐶⟩ ∈ V)
13 opeq2 3766 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
14 df-inl 7024 . . . . . . . . . . . . 13 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
1513, 14fvmptg 5572 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ ⟨∅, 𝐶⟩ ∈ V) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
1610, 12, 15syl2anc 409 . . . . . . . . . . 11 (𝐶𝑉 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
1716adantr 274 . . . . . . . . . 10 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
18 df-dju 7015 . . . . . . . . . . . . 13 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1918eleq2i 2237 . . . . . . . . . . . 12 ((inl‘𝐶) ∈ (𝐴𝐵) ↔ (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2019biimpi 119 . . . . . . . . . . 11 ((inl‘𝐶) ∈ (𝐴𝐵) → (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2120adantl 275 . . . . . . . . . 10 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2217, 21eqeltrrd 2248 . . . . . . . . 9 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
23 elun 3268 . . . . . . . . 9 (⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ∨ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)))
2422, 23sylib 121 . . . . . . . 8 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ∨ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)))
2524orcomd 724 . . . . . . 7 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) ∨ ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)))
2625ord 719 . . . . . 6 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (¬ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)))
279, 26mpi 15 . . . . 5 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
28 opelxp 4641 . . . . 5 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ↔ (∅ ∈ {∅} ∧ 𝐶𝐴))
2927, 28sylib 121 . . . 4 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (∅ ∈ {∅} ∧ 𝐶𝐴))
3029simprd 113 . . 3 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → 𝐶𝐴)
3130ex 114 . 2 (𝐶𝑉 → ((inl‘𝐶) ∈ (𝐴𝐵) → 𝐶𝐴))
321, 31impbid2 142 1 (𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  Vcvv 2730  cun 3119  c0 3414  {csn 3583  cop 3586   × cxp 4609  cfv 5198  1oc1o 6388  cdju 7014  inlcinl 7022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-1o 6395  df-dju 7015  df-inl 7024
This theorem is referenced by:  exmidfodomrlemr  7179
  Copyright terms: Public domain W3C validator