ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclb GIF version

Theorem djulclb 7114
Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djulclb (𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))

Proof of Theorem djulclb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djulcl 7110 . 2 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
2 1n0 6485 . . . . . . . . . 10 1o ≠ ∅
32necomi 2449 . . . . . . . . 9 ∅ ≠ 1o
4 0ex 4156 . . . . . . . . . 10 ∅ ∈ V
54elsn 3634 . . . . . . . . 9 (∅ ∈ {1o} ↔ ∅ = 1o)
63, 5nemtbir 2453 . . . . . . . 8 ¬ ∅ ∈ {1o}
76intnanr 931 . . . . . . 7 ¬ (∅ ∈ {1o} ∧ 𝐶𝐵)
8 opelxp 4689 . . . . . . 7 (⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) ↔ (∅ ∈ {1o} ∧ 𝐶𝐵))
97, 8mtbir 672 . . . . . 6 ¬ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)
10 elex 2771 . . . . . . . . . . . 12 (𝐶𝑉𝐶 ∈ V)
11 opexg 4257 . . . . . . . . . . . . 13 ((∅ ∈ V ∧ 𝐶𝑉) → ⟨∅, 𝐶⟩ ∈ V)
124, 11mpan 424 . . . . . . . . . . . 12 (𝐶𝑉 → ⟨∅, 𝐶⟩ ∈ V)
13 opeq2 3805 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
14 df-inl 7106 . . . . . . . . . . . . 13 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
1513, 14fvmptg 5633 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ ⟨∅, 𝐶⟩ ∈ V) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
1610, 12, 15syl2anc 411 . . . . . . . . . . 11 (𝐶𝑉 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
1716adantr 276 . . . . . . . . . 10 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
18 df-dju 7097 . . . . . . . . . . . . 13 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1918eleq2i 2260 . . . . . . . . . . . 12 ((inl‘𝐶) ∈ (𝐴𝐵) ↔ (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2019biimpi 120 . . . . . . . . . . 11 ((inl‘𝐶) ∈ (𝐴𝐵) → (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2120adantl 277 . . . . . . . . . 10 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2217, 21eqeltrrd 2271 . . . . . . . . 9 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
23 elun 3300 . . . . . . . . 9 (⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ∨ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)))
2422, 23sylib 122 . . . . . . . 8 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ∨ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)))
2524orcomd 730 . . . . . . 7 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) ∨ ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)))
2625ord 725 . . . . . 6 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (¬ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)))
279, 26mpi 15 . . . . 5 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
28 opelxp 4689 . . . . 5 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ↔ (∅ ∈ {∅} ∧ 𝐶𝐴))
2927, 28sylib 122 . . . 4 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (∅ ∈ {∅} ∧ 𝐶𝐴))
3029simprd 114 . . 3 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → 𝐶𝐴)
3130ex 115 . 2 (𝐶𝑉 → ((inl‘𝐶) ∈ (𝐴𝐵) → 𝐶𝐴))
321, 31impbid2 143 1 (𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  Vcvv 2760  cun 3151  c0 3446  {csn 3618  cop 3621   × cxp 4657  cfv 5254  1oc1o 6462  cdju 7096  inlcinl 7104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-1o 6469  df-dju 7097  df-inl 7106
This theorem is referenced by:  exmidfodomrlemr  7262
  Copyright terms: Public domain W3C validator