ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5 GIF version

Theorem php5 6836
Description: A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
php5 (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴)

Proof of Theorem php5
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4 (𝑤 = ∅ → 𝑤 = ∅)
2 suceq 4387 . . . 4 (𝑤 = ∅ → suc 𝑤 = suc ∅)
31, 2breq12d 4002 . . 3 (𝑤 = ∅ → (𝑤 ≈ suc 𝑤 ↔ ∅ ≈ suc ∅))
43notbid 662 . 2 (𝑤 = ∅ → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ ∅ ≈ suc ∅))
5 id 19 . . . 4 (𝑤 = 𝑘𝑤 = 𝑘)
6 suceq 4387 . . . 4 (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘)
75, 6breq12d 4002 . . 3 (𝑤 = 𝑘 → (𝑤 ≈ suc 𝑤𝑘 ≈ suc 𝑘))
87notbid 662 . 2 (𝑤 = 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝑘 ≈ suc 𝑘))
9 id 19 . . . 4 (𝑤 = suc 𝑘𝑤 = suc 𝑘)
10 suceq 4387 . . . 4 (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘)
119, 10breq12d 4002 . . 3 (𝑤 = suc 𝑘 → (𝑤 ≈ suc 𝑤 ↔ suc 𝑘 ≈ suc suc 𝑘))
1211notbid 662 . 2 (𝑤 = suc 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ suc 𝑘 ≈ suc suc 𝑘))
13 id 19 . . . 4 (𝑤 = 𝐴𝑤 = 𝐴)
14 suceq 4387 . . . 4 (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴)
1513, 14breq12d 4002 . . 3 (𝑤 = 𝐴 → (𝑤 ≈ suc 𝑤𝐴 ≈ suc 𝐴))
1615notbid 662 . 2 (𝑤 = 𝐴 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝐴 ≈ suc 𝐴))
17 peano1 4578 . . . . 5 ∅ ∈ ω
18 peano3 4580 . . . . 5 (∅ ∈ ω → suc ∅ ≠ ∅)
1917, 18ax-mp 5 . . . 4 suc ∅ ≠ ∅
20 en0 6773 . . . 4 (suc ∅ ≈ ∅ ↔ suc ∅ = ∅)
2119, 20nemtbir 2429 . . 3 ¬ suc ∅ ≈ ∅
22 ensymb 6758 . . 3 (suc ∅ ≈ ∅ ↔ ∅ ≈ suc ∅)
2321, 22mtbi 665 . 2 ¬ ∅ ≈ suc ∅
24 peano2 4579 . . . 4 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
25 vex 2733 . . . . 5 𝑘 ∈ V
2625sucex 4483 . . . . 5 suc 𝑘 ∈ V
2725, 26phplem4 6833 . . . 4 ((𝑘 ∈ ω ∧ suc 𝑘 ∈ ω) → (suc 𝑘 ≈ suc suc 𝑘𝑘 ≈ suc 𝑘))
2824, 27mpdan 419 . . 3 (𝑘 ∈ ω → (suc 𝑘 ≈ suc suc 𝑘𝑘 ≈ suc 𝑘))
2928con3d 626 . 2 (𝑘 ∈ ω → (¬ 𝑘 ≈ suc 𝑘 → ¬ suc 𝑘 ≈ suc suc 𝑘))
304, 8, 12, 16, 23, 29finds 4584 1 (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1348  wcel 2141  wne 2340  c0 3414   class class class wbr 3989  suc csuc 4350  ωcom 4574  cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719
This theorem is referenced by:  snnen2og  6837  1nen2  6839  php5dom  6841  php5fin  6860
  Copyright terms: Public domain W3C validator