| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > php5 | GIF version | ||
| Description: A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.) |
| Ref | Expression |
|---|---|
| php5 | ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . . 4 ⊢ (𝑤 = ∅ → 𝑤 = ∅) | |
| 2 | suceq 4449 | . . . 4 ⊢ (𝑤 = ∅ → suc 𝑤 = suc ∅) | |
| 3 | 1, 2 | breq12d 4057 | . . 3 ⊢ (𝑤 = ∅ → (𝑤 ≈ suc 𝑤 ↔ ∅ ≈ suc ∅)) |
| 4 | 3 | notbid 669 | . 2 ⊢ (𝑤 = ∅ → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ ∅ ≈ suc ∅)) |
| 5 | id 19 | . . . 4 ⊢ (𝑤 = 𝑘 → 𝑤 = 𝑘) | |
| 6 | suceq 4449 | . . . 4 ⊢ (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘) | |
| 7 | 5, 6 | breq12d 4057 | . . 3 ⊢ (𝑤 = 𝑘 → (𝑤 ≈ suc 𝑤 ↔ 𝑘 ≈ suc 𝑘)) |
| 8 | 7 | notbid 669 | . 2 ⊢ (𝑤 = 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝑘 ≈ suc 𝑘)) |
| 9 | id 19 | . . . 4 ⊢ (𝑤 = suc 𝑘 → 𝑤 = suc 𝑘) | |
| 10 | suceq 4449 | . . . 4 ⊢ (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘) | |
| 11 | 9, 10 | breq12d 4057 | . . 3 ⊢ (𝑤 = suc 𝑘 → (𝑤 ≈ suc 𝑤 ↔ suc 𝑘 ≈ suc suc 𝑘)) |
| 12 | 11 | notbid 669 | . 2 ⊢ (𝑤 = suc 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ suc 𝑘 ≈ suc suc 𝑘)) |
| 13 | id 19 | . . . 4 ⊢ (𝑤 = 𝐴 → 𝑤 = 𝐴) | |
| 14 | suceq 4449 | . . . 4 ⊢ (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴) | |
| 15 | 13, 14 | breq12d 4057 | . . 3 ⊢ (𝑤 = 𝐴 → (𝑤 ≈ suc 𝑤 ↔ 𝐴 ≈ suc 𝐴)) |
| 16 | 15 | notbid 669 | . 2 ⊢ (𝑤 = 𝐴 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝐴 ≈ suc 𝐴)) |
| 17 | peano1 4642 | . . . . 5 ⊢ ∅ ∈ ω | |
| 18 | peano3 4644 | . . . . 5 ⊢ (∅ ∈ ω → suc ∅ ≠ ∅) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ suc ∅ ≠ ∅ |
| 20 | en0 6887 | . . . 4 ⊢ (suc ∅ ≈ ∅ ↔ suc ∅ = ∅) | |
| 21 | 19, 20 | nemtbir 2465 | . . 3 ⊢ ¬ suc ∅ ≈ ∅ |
| 22 | ensymb 6872 | . . 3 ⊢ (suc ∅ ≈ ∅ ↔ ∅ ≈ suc ∅) | |
| 23 | 21, 22 | mtbi 672 | . 2 ⊢ ¬ ∅ ≈ suc ∅ |
| 24 | peano2 4643 | . . . 4 ⊢ (𝑘 ∈ ω → suc 𝑘 ∈ ω) | |
| 25 | vex 2775 | . . . . 5 ⊢ 𝑘 ∈ V | |
| 26 | 25 | sucex 4547 | . . . . 5 ⊢ suc 𝑘 ∈ V |
| 27 | 25, 26 | phplem4 6952 | . . . 4 ⊢ ((𝑘 ∈ ω ∧ suc 𝑘 ∈ ω) → (suc 𝑘 ≈ suc suc 𝑘 → 𝑘 ≈ suc 𝑘)) |
| 28 | 24, 27 | mpdan 421 | . . 3 ⊢ (𝑘 ∈ ω → (suc 𝑘 ≈ suc suc 𝑘 → 𝑘 ≈ suc 𝑘)) |
| 29 | 28 | con3d 632 | . 2 ⊢ (𝑘 ∈ ω → (¬ 𝑘 ≈ suc 𝑘 → ¬ suc 𝑘 ≈ suc suc 𝑘)) |
| 30 | 4, 8, 12, 16, 23, 29 | finds 4648 | 1 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 ∅c0 3460 class class class wbr 4044 suc csuc 4412 ωcom 4638 ≈ cen 6825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-er 6620 df-en 6828 |
| This theorem is referenced by: snnen2og 6956 1nen2 6958 php5dom 6960 php5fin 6979 |
| Copyright terms: Public domain | W3C validator |