| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > php5 | GIF version | ||
| Description: A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.) |
| Ref | Expression |
|---|---|
| php5 | ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . . 4 ⊢ (𝑤 = ∅ → 𝑤 = ∅) | |
| 2 | suceq 4492 | . . . 4 ⊢ (𝑤 = ∅ → suc 𝑤 = suc ∅) | |
| 3 | 1, 2 | breq12d 4095 | . . 3 ⊢ (𝑤 = ∅ → (𝑤 ≈ suc 𝑤 ↔ ∅ ≈ suc ∅)) |
| 4 | 3 | notbid 671 | . 2 ⊢ (𝑤 = ∅ → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ ∅ ≈ suc ∅)) |
| 5 | id 19 | . . . 4 ⊢ (𝑤 = 𝑘 → 𝑤 = 𝑘) | |
| 6 | suceq 4492 | . . . 4 ⊢ (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘) | |
| 7 | 5, 6 | breq12d 4095 | . . 3 ⊢ (𝑤 = 𝑘 → (𝑤 ≈ suc 𝑤 ↔ 𝑘 ≈ suc 𝑘)) |
| 8 | 7 | notbid 671 | . 2 ⊢ (𝑤 = 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝑘 ≈ suc 𝑘)) |
| 9 | id 19 | . . . 4 ⊢ (𝑤 = suc 𝑘 → 𝑤 = suc 𝑘) | |
| 10 | suceq 4492 | . . . 4 ⊢ (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘) | |
| 11 | 9, 10 | breq12d 4095 | . . 3 ⊢ (𝑤 = suc 𝑘 → (𝑤 ≈ suc 𝑤 ↔ suc 𝑘 ≈ suc suc 𝑘)) |
| 12 | 11 | notbid 671 | . 2 ⊢ (𝑤 = suc 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ suc 𝑘 ≈ suc suc 𝑘)) |
| 13 | id 19 | . . . 4 ⊢ (𝑤 = 𝐴 → 𝑤 = 𝐴) | |
| 14 | suceq 4492 | . . . 4 ⊢ (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴) | |
| 15 | 13, 14 | breq12d 4095 | . . 3 ⊢ (𝑤 = 𝐴 → (𝑤 ≈ suc 𝑤 ↔ 𝐴 ≈ suc 𝐴)) |
| 16 | 15 | notbid 671 | . 2 ⊢ (𝑤 = 𝐴 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝐴 ≈ suc 𝐴)) |
| 17 | peano1 4685 | . . . . 5 ⊢ ∅ ∈ ω | |
| 18 | peano3 4687 | . . . . 5 ⊢ (∅ ∈ ω → suc ∅ ≠ ∅) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ suc ∅ ≠ ∅ |
| 20 | en0 6945 | . . . 4 ⊢ (suc ∅ ≈ ∅ ↔ suc ∅ = ∅) | |
| 21 | 19, 20 | nemtbir 2489 | . . 3 ⊢ ¬ suc ∅ ≈ ∅ |
| 22 | ensymb 6930 | . . 3 ⊢ (suc ∅ ≈ ∅ ↔ ∅ ≈ suc ∅) | |
| 23 | 21, 22 | mtbi 674 | . 2 ⊢ ¬ ∅ ≈ suc ∅ |
| 24 | peano2 4686 | . . . 4 ⊢ (𝑘 ∈ ω → suc 𝑘 ∈ ω) | |
| 25 | vex 2802 | . . . . 5 ⊢ 𝑘 ∈ V | |
| 26 | 25 | sucex 4590 | . . . . 5 ⊢ suc 𝑘 ∈ V |
| 27 | 25, 26 | phplem4 7012 | . . . 4 ⊢ ((𝑘 ∈ ω ∧ suc 𝑘 ∈ ω) → (suc 𝑘 ≈ suc suc 𝑘 → 𝑘 ≈ suc 𝑘)) |
| 28 | 24, 27 | mpdan 421 | . . 3 ⊢ (𝑘 ∈ ω → (suc 𝑘 ≈ suc suc 𝑘 → 𝑘 ≈ suc 𝑘)) |
| 29 | 28 | con3d 634 | . 2 ⊢ (𝑘 ∈ ω → (¬ 𝑘 ≈ suc 𝑘 → ¬ suc 𝑘 ≈ suc suc 𝑘)) |
| 30 | 4, 8, 12, 16, 23, 29 | finds 4691 | 1 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 class class class wbr 4082 suc csuc 4455 ωcom 4681 ≈ cen 6883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-er 6678 df-en 6886 |
| This theorem is referenced by: snnen2og 7016 1nen2 7018 php5dom 7020 php5fin 7040 |
| Copyright terms: Public domain | W3C validator |