| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > php5 | GIF version | ||
| Description: A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.) |
| Ref | Expression |
|---|---|
| php5 | ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . . 4 ⊢ (𝑤 = ∅ → 𝑤 = ∅) | |
| 2 | suceq 4437 | . . . 4 ⊢ (𝑤 = ∅ → suc 𝑤 = suc ∅) | |
| 3 | 1, 2 | breq12d 4046 | . . 3 ⊢ (𝑤 = ∅ → (𝑤 ≈ suc 𝑤 ↔ ∅ ≈ suc ∅)) |
| 4 | 3 | notbid 668 | . 2 ⊢ (𝑤 = ∅ → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ ∅ ≈ suc ∅)) |
| 5 | id 19 | . . . 4 ⊢ (𝑤 = 𝑘 → 𝑤 = 𝑘) | |
| 6 | suceq 4437 | . . . 4 ⊢ (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘) | |
| 7 | 5, 6 | breq12d 4046 | . . 3 ⊢ (𝑤 = 𝑘 → (𝑤 ≈ suc 𝑤 ↔ 𝑘 ≈ suc 𝑘)) |
| 8 | 7 | notbid 668 | . 2 ⊢ (𝑤 = 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝑘 ≈ suc 𝑘)) |
| 9 | id 19 | . . . 4 ⊢ (𝑤 = suc 𝑘 → 𝑤 = suc 𝑘) | |
| 10 | suceq 4437 | . . . 4 ⊢ (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘) | |
| 11 | 9, 10 | breq12d 4046 | . . 3 ⊢ (𝑤 = suc 𝑘 → (𝑤 ≈ suc 𝑤 ↔ suc 𝑘 ≈ suc suc 𝑘)) |
| 12 | 11 | notbid 668 | . 2 ⊢ (𝑤 = suc 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ suc 𝑘 ≈ suc suc 𝑘)) |
| 13 | id 19 | . . . 4 ⊢ (𝑤 = 𝐴 → 𝑤 = 𝐴) | |
| 14 | suceq 4437 | . . . 4 ⊢ (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴) | |
| 15 | 13, 14 | breq12d 4046 | . . 3 ⊢ (𝑤 = 𝐴 → (𝑤 ≈ suc 𝑤 ↔ 𝐴 ≈ suc 𝐴)) |
| 16 | 15 | notbid 668 | . 2 ⊢ (𝑤 = 𝐴 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝐴 ≈ suc 𝐴)) |
| 17 | peano1 4630 | . . . . 5 ⊢ ∅ ∈ ω | |
| 18 | peano3 4632 | . . . . 5 ⊢ (∅ ∈ ω → suc ∅ ≠ ∅) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ suc ∅ ≠ ∅ |
| 20 | en0 6854 | . . . 4 ⊢ (suc ∅ ≈ ∅ ↔ suc ∅ = ∅) | |
| 21 | 19, 20 | nemtbir 2456 | . . 3 ⊢ ¬ suc ∅ ≈ ∅ |
| 22 | ensymb 6839 | . . 3 ⊢ (suc ∅ ≈ ∅ ↔ ∅ ≈ suc ∅) | |
| 23 | 21, 22 | mtbi 671 | . 2 ⊢ ¬ ∅ ≈ suc ∅ |
| 24 | peano2 4631 | . . . 4 ⊢ (𝑘 ∈ ω → suc 𝑘 ∈ ω) | |
| 25 | vex 2766 | . . . . 5 ⊢ 𝑘 ∈ V | |
| 26 | 25 | sucex 4535 | . . . . 5 ⊢ suc 𝑘 ∈ V |
| 27 | 25, 26 | phplem4 6916 | . . . 4 ⊢ ((𝑘 ∈ ω ∧ suc 𝑘 ∈ ω) → (suc 𝑘 ≈ suc suc 𝑘 → 𝑘 ≈ suc 𝑘)) |
| 28 | 24, 27 | mpdan 421 | . . 3 ⊢ (𝑘 ∈ ω → (suc 𝑘 ≈ suc suc 𝑘 → 𝑘 ≈ suc 𝑘)) |
| 29 | 28 | con3d 632 | . 2 ⊢ (𝑘 ∈ ω → (¬ 𝑘 ≈ suc 𝑘 → ¬ suc 𝑘 ≈ suc suc 𝑘)) |
| 30 | 4, 8, 12, 16, 23, 29 | finds 4636 | 1 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∅c0 3450 class class class wbr 4033 suc csuc 4400 ωcom 4626 ≈ cen 6797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-er 6592 df-en 6800 |
| This theorem is referenced by: snnen2og 6920 1nen2 6922 php5dom 6924 php5fin 6943 |
| Copyright terms: Public domain | W3C validator |