| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > php5 | GIF version | ||
| Description: A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.) |
| Ref | Expression |
|---|---|
| php5 | ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . . 4 ⊢ (𝑤 = ∅ → 𝑤 = ∅) | |
| 2 | suceq 4462 | . . . 4 ⊢ (𝑤 = ∅ → suc 𝑤 = suc ∅) | |
| 3 | 1, 2 | breq12d 4067 | . . 3 ⊢ (𝑤 = ∅ → (𝑤 ≈ suc 𝑤 ↔ ∅ ≈ suc ∅)) |
| 4 | 3 | notbid 669 | . 2 ⊢ (𝑤 = ∅ → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ ∅ ≈ suc ∅)) |
| 5 | id 19 | . . . 4 ⊢ (𝑤 = 𝑘 → 𝑤 = 𝑘) | |
| 6 | suceq 4462 | . . . 4 ⊢ (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘) | |
| 7 | 5, 6 | breq12d 4067 | . . 3 ⊢ (𝑤 = 𝑘 → (𝑤 ≈ suc 𝑤 ↔ 𝑘 ≈ suc 𝑘)) |
| 8 | 7 | notbid 669 | . 2 ⊢ (𝑤 = 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝑘 ≈ suc 𝑘)) |
| 9 | id 19 | . . . 4 ⊢ (𝑤 = suc 𝑘 → 𝑤 = suc 𝑘) | |
| 10 | suceq 4462 | . . . 4 ⊢ (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘) | |
| 11 | 9, 10 | breq12d 4067 | . . 3 ⊢ (𝑤 = suc 𝑘 → (𝑤 ≈ suc 𝑤 ↔ suc 𝑘 ≈ suc suc 𝑘)) |
| 12 | 11 | notbid 669 | . 2 ⊢ (𝑤 = suc 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ suc 𝑘 ≈ suc suc 𝑘)) |
| 13 | id 19 | . . . 4 ⊢ (𝑤 = 𝐴 → 𝑤 = 𝐴) | |
| 14 | suceq 4462 | . . . 4 ⊢ (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴) | |
| 15 | 13, 14 | breq12d 4067 | . . 3 ⊢ (𝑤 = 𝐴 → (𝑤 ≈ suc 𝑤 ↔ 𝐴 ≈ suc 𝐴)) |
| 16 | 15 | notbid 669 | . 2 ⊢ (𝑤 = 𝐴 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝐴 ≈ suc 𝐴)) |
| 17 | peano1 4655 | . . . . 5 ⊢ ∅ ∈ ω | |
| 18 | peano3 4657 | . . . . 5 ⊢ (∅ ∈ ω → suc ∅ ≠ ∅) | |
| 19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ suc ∅ ≠ ∅ |
| 20 | en0 6905 | . . . 4 ⊢ (suc ∅ ≈ ∅ ↔ suc ∅ = ∅) | |
| 21 | 19, 20 | nemtbir 2466 | . . 3 ⊢ ¬ suc ∅ ≈ ∅ |
| 22 | ensymb 6890 | . . 3 ⊢ (suc ∅ ≈ ∅ ↔ ∅ ≈ suc ∅) | |
| 23 | 21, 22 | mtbi 672 | . 2 ⊢ ¬ ∅ ≈ suc ∅ |
| 24 | peano2 4656 | . . . 4 ⊢ (𝑘 ∈ ω → suc 𝑘 ∈ ω) | |
| 25 | vex 2776 | . . . . 5 ⊢ 𝑘 ∈ V | |
| 26 | 25 | sucex 4560 | . . . . 5 ⊢ suc 𝑘 ∈ V |
| 27 | 25, 26 | phplem4 6972 | . . . 4 ⊢ ((𝑘 ∈ ω ∧ suc 𝑘 ∈ ω) → (suc 𝑘 ≈ suc suc 𝑘 → 𝑘 ≈ suc 𝑘)) |
| 28 | 24, 27 | mpdan 421 | . . 3 ⊢ (𝑘 ∈ ω → (suc 𝑘 ≈ suc suc 𝑘 → 𝑘 ≈ suc 𝑘)) |
| 29 | 28 | con3d 632 | . 2 ⊢ (𝑘 ∈ ω → (¬ 𝑘 ≈ suc 𝑘 → ¬ suc 𝑘 ≈ suc suc 𝑘)) |
| 30 | 4, 8, 12, 16, 23, 29 | finds 4661 | 1 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∅c0 3464 class class class wbr 4054 suc csuc 4425 ωcom 4651 ≈ cen 6843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-er 6638 df-en 6846 |
| This theorem is referenced by: snnen2og 6976 1nen2 6978 php5dom 6980 php5fin 7000 |
| Copyright terms: Public domain | W3C validator |