ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5 GIF version

Theorem php5 6824
Description: A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
php5 (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴)

Proof of Theorem php5
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4 (𝑤 = ∅ → 𝑤 = ∅)
2 suceq 4380 . . . 4 (𝑤 = ∅ → suc 𝑤 = suc ∅)
31, 2breq12d 3995 . . 3 (𝑤 = ∅ → (𝑤 ≈ suc 𝑤 ↔ ∅ ≈ suc ∅))
43notbid 657 . 2 (𝑤 = ∅ → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ ∅ ≈ suc ∅))
5 id 19 . . . 4 (𝑤 = 𝑘𝑤 = 𝑘)
6 suceq 4380 . . . 4 (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘)
75, 6breq12d 3995 . . 3 (𝑤 = 𝑘 → (𝑤 ≈ suc 𝑤𝑘 ≈ suc 𝑘))
87notbid 657 . 2 (𝑤 = 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝑘 ≈ suc 𝑘))
9 id 19 . . . 4 (𝑤 = suc 𝑘𝑤 = suc 𝑘)
10 suceq 4380 . . . 4 (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘)
119, 10breq12d 3995 . . 3 (𝑤 = suc 𝑘 → (𝑤 ≈ suc 𝑤 ↔ suc 𝑘 ≈ suc suc 𝑘))
1211notbid 657 . 2 (𝑤 = suc 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ suc 𝑘 ≈ suc suc 𝑘))
13 id 19 . . . 4 (𝑤 = 𝐴𝑤 = 𝐴)
14 suceq 4380 . . . 4 (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴)
1513, 14breq12d 3995 . . 3 (𝑤 = 𝐴 → (𝑤 ≈ suc 𝑤𝐴 ≈ suc 𝐴))
1615notbid 657 . 2 (𝑤 = 𝐴 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝐴 ≈ suc 𝐴))
17 peano1 4571 . . . . 5 ∅ ∈ ω
18 peano3 4573 . . . . 5 (∅ ∈ ω → suc ∅ ≠ ∅)
1917, 18ax-mp 5 . . . 4 suc ∅ ≠ ∅
20 en0 6761 . . . 4 (suc ∅ ≈ ∅ ↔ suc ∅ = ∅)
2119, 20nemtbir 2425 . . 3 ¬ suc ∅ ≈ ∅
22 ensymb 6746 . . 3 (suc ∅ ≈ ∅ ↔ ∅ ≈ suc ∅)
2321, 22mtbi 660 . 2 ¬ ∅ ≈ suc ∅
24 peano2 4572 . . . 4 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
25 vex 2729 . . . . 5 𝑘 ∈ V
2625sucex 4476 . . . . 5 suc 𝑘 ∈ V
2725, 26phplem4 6821 . . . 4 ((𝑘 ∈ ω ∧ suc 𝑘 ∈ ω) → (suc 𝑘 ≈ suc suc 𝑘𝑘 ≈ suc 𝑘))
2824, 27mpdan 418 . . 3 (𝑘 ∈ ω → (suc 𝑘 ≈ suc suc 𝑘𝑘 ≈ suc 𝑘))
2928con3d 621 . 2 (𝑘 ∈ ω → (¬ 𝑘 ≈ suc 𝑘 → ¬ suc 𝑘 ≈ suc suc 𝑘))
304, 8, 12, 16, 23, 29finds 4577 1 (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wcel 2136  wne 2336  c0 3409   class class class wbr 3982  suc csuc 4343  ωcom 4567  cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707
This theorem is referenced by:  snnen2og  6825  1nen2  6827  php5dom  6829  php5fin  6848
  Copyright terms: Public domain W3C validator