ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5 GIF version

Theorem php5 6955
Description: A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
php5 (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴)

Proof of Theorem php5
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4 (𝑤 = ∅ → 𝑤 = ∅)
2 suceq 4449 . . . 4 (𝑤 = ∅ → suc 𝑤 = suc ∅)
31, 2breq12d 4057 . . 3 (𝑤 = ∅ → (𝑤 ≈ suc 𝑤 ↔ ∅ ≈ suc ∅))
43notbid 669 . 2 (𝑤 = ∅ → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ ∅ ≈ suc ∅))
5 id 19 . . . 4 (𝑤 = 𝑘𝑤 = 𝑘)
6 suceq 4449 . . . 4 (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘)
75, 6breq12d 4057 . . 3 (𝑤 = 𝑘 → (𝑤 ≈ suc 𝑤𝑘 ≈ suc 𝑘))
87notbid 669 . 2 (𝑤 = 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝑘 ≈ suc 𝑘))
9 id 19 . . . 4 (𝑤 = suc 𝑘𝑤 = suc 𝑘)
10 suceq 4449 . . . 4 (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘)
119, 10breq12d 4057 . . 3 (𝑤 = suc 𝑘 → (𝑤 ≈ suc 𝑤 ↔ suc 𝑘 ≈ suc suc 𝑘))
1211notbid 669 . 2 (𝑤 = suc 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ suc 𝑘 ≈ suc suc 𝑘))
13 id 19 . . . 4 (𝑤 = 𝐴𝑤 = 𝐴)
14 suceq 4449 . . . 4 (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴)
1513, 14breq12d 4057 . . 3 (𝑤 = 𝐴 → (𝑤 ≈ suc 𝑤𝐴 ≈ suc 𝐴))
1615notbid 669 . 2 (𝑤 = 𝐴 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝐴 ≈ suc 𝐴))
17 peano1 4642 . . . . 5 ∅ ∈ ω
18 peano3 4644 . . . . 5 (∅ ∈ ω → suc ∅ ≠ ∅)
1917, 18ax-mp 5 . . . 4 suc ∅ ≠ ∅
20 en0 6887 . . . 4 (suc ∅ ≈ ∅ ↔ suc ∅ = ∅)
2119, 20nemtbir 2465 . . 3 ¬ suc ∅ ≈ ∅
22 ensymb 6872 . . 3 (suc ∅ ≈ ∅ ↔ ∅ ≈ suc ∅)
2321, 22mtbi 672 . 2 ¬ ∅ ≈ suc ∅
24 peano2 4643 . . . 4 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
25 vex 2775 . . . . 5 𝑘 ∈ V
2625sucex 4547 . . . . 5 suc 𝑘 ∈ V
2725, 26phplem4 6952 . . . 4 ((𝑘 ∈ ω ∧ suc 𝑘 ∈ ω) → (suc 𝑘 ≈ suc suc 𝑘𝑘 ≈ suc 𝑘))
2824, 27mpdan 421 . . 3 (𝑘 ∈ ω → (suc 𝑘 ≈ suc suc 𝑘𝑘 ≈ suc 𝑘))
2928con3d 632 . 2 (𝑘 ∈ ω → (¬ 𝑘 ≈ suc 𝑘 → ¬ suc 𝑘 ≈ suc suc 𝑘))
304, 8, 12, 16, 23, 29finds 4648 1 (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2176  wne 2376  c0 3460   class class class wbr 4044  suc csuc 4412  ωcom 4638  cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6620  df-en 6828
This theorem is referenced by:  snnen2og  6956  1nen2  6958  php5dom  6960  php5fin  6979
  Copyright terms: Public domain W3C validator