Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > php5 | GIF version |
Description: A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.) |
Ref | Expression |
---|---|
php5 | ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 ⊢ (𝑤 = ∅ → 𝑤 = ∅) | |
2 | suceq 4380 | . . . 4 ⊢ (𝑤 = ∅ → suc 𝑤 = suc ∅) | |
3 | 1, 2 | breq12d 3995 | . . 3 ⊢ (𝑤 = ∅ → (𝑤 ≈ suc 𝑤 ↔ ∅ ≈ suc ∅)) |
4 | 3 | notbid 657 | . 2 ⊢ (𝑤 = ∅ → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ ∅ ≈ suc ∅)) |
5 | id 19 | . . . 4 ⊢ (𝑤 = 𝑘 → 𝑤 = 𝑘) | |
6 | suceq 4380 | . . . 4 ⊢ (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘) | |
7 | 5, 6 | breq12d 3995 | . . 3 ⊢ (𝑤 = 𝑘 → (𝑤 ≈ suc 𝑤 ↔ 𝑘 ≈ suc 𝑘)) |
8 | 7 | notbid 657 | . 2 ⊢ (𝑤 = 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝑘 ≈ suc 𝑘)) |
9 | id 19 | . . . 4 ⊢ (𝑤 = suc 𝑘 → 𝑤 = suc 𝑘) | |
10 | suceq 4380 | . . . 4 ⊢ (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘) | |
11 | 9, 10 | breq12d 3995 | . . 3 ⊢ (𝑤 = suc 𝑘 → (𝑤 ≈ suc 𝑤 ↔ suc 𝑘 ≈ suc suc 𝑘)) |
12 | 11 | notbid 657 | . 2 ⊢ (𝑤 = suc 𝑘 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ suc 𝑘 ≈ suc suc 𝑘)) |
13 | id 19 | . . . 4 ⊢ (𝑤 = 𝐴 → 𝑤 = 𝐴) | |
14 | suceq 4380 | . . . 4 ⊢ (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴) | |
15 | 13, 14 | breq12d 3995 | . . 3 ⊢ (𝑤 = 𝐴 → (𝑤 ≈ suc 𝑤 ↔ 𝐴 ≈ suc 𝐴)) |
16 | 15 | notbid 657 | . 2 ⊢ (𝑤 = 𝐴 → (¬ 𝑤 ≈ suc 𝑤 ↔ ¬ 𝐴 ≈ suc 𝐴)) |
17 | peano1 4571 | . . . . 5 ⊢ ∅ ∈ ω | |
18 | peano3 4573 | . . . . 5 ⊢ (∅ ∈ ω → suc ∅ ≠ ∅) | |
19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ suc ∅ ≠ ∅ |
20 | en0 6761 | . . . 4 ⊢ (suc ∅ ≈ ∅ ↔ suc ∅ = ∅) | |
21 | 19, 20 | nemtbir 2425 | . . 3 ⊢ ¬ suc ∅ ≈ ∅ |
22 | ensymb 6746 | . . 3 ⊢ (suc ∅ ≈ ∅ ↔ ∅ ≈ suc ∅) | |
23 | 21, 22 | mtbi 660 | . 2 ⊢ ¬ ∅ ≈ suc ∅ |
24 | peano2 4572 | . . . 4 ⊢ (𝑘 ∈ ω → suc 𝑘 ∈ ω) | |
25 | vex 2729 | . . . . 5 ⊢ 𝑘 ∈ V | |
26 | 25 | sucex 4476 | . . . . 5 ⊢ suc 𝑘 ∈ V |
27 | 25, 26 | phplem4 6821 | . . . 4 ⊢ ((𝑘 ∈ ω ∧ suc 𝑘 ∈ ω) → (suc 𝑘 ≈ suc suc 𝑘 → 𝑘 ≈ suc 𝑘)) |
28 | 24, 27 | mpdan 418 | . . 3 ⊢ (𝑘 ∈ ω → (suc 𝑘 ≈ suc suc 𝑘 → 𝑘 ≈ suc 𝑘)) |
29 | 28 | con3d 621 | . 2 ⊢ (𝑘 ∈ ω → (¬ 𝑘 ≈ suc 𝑘 → ¬ suc 𝑘 ≈ suc suc 𝑘)) |
30 | 4, 8, 12, 16, 23, 29 | finds 4577 | 1 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∅c0 3409 class class class wbr 3982 suc csuc 4343 ωcom 4567 ≈ cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 |
This theorem is referenced by: snnen2og 6825 1nen2 6827 php5dom 6829 php5fin 6848 |
Copyright terms: Public domain | W3C validator |