![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eusv2nf | GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eusv2nf | ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2037 | . . . 4 ⊢ Ⅎ𝑦∃!𝑦∃𝑥 𝑦 = 𝐴 | |
2 | nfe1 1496 | . . . . . . 7 ⊢ Ⅎ𝑥∃𝑥 𝑦 = 𝐴 | |
3 | 2 | nfeu 2045 | . . . . . 6 ⊢ Ⅎ𝑥∃!𝑦∃𝑥 𝑦 = 𝐴 |
4 | eusv2.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ V | |
5 | 4 | isseti 2746 | . . . . . . . 8 ⊢ ∃𝑦 𝑦 = 𝐴 |
6 | 19.8a 1590 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴) | |
7 | 6 | ancri 324 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴)) |
8 | 5, 7 | eximii 1602 | . . . . . . 7 ⊢ ∃𝑦(∃𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴) |
9 | eupick 2105 | . . . . . . 7 ⊢ ((∃!𝑦∃𝑥 𝑦 = 𝐴 ∧ ∃𝑦(∃𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴)) → (∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) | |
10 | 8, 9 | mpan2 425 | . . . . . 6 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) |
11 | 3, 10 | alrimi 1522 | . . . . 5 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 → ∀𝑥(∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) |
12 | nf3 1669 | . . . . 5 ⊢ (Ⅎ𝑥 𝑦 = 𝐴 ↔ ∀𝑥(∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) | |
13 | 11, 12 | sylibr 134 | . . . 4 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
14 | 1, 13 | alrimi 1522 | . . 3 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 → ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
15 | dfnfc2 3828 | . . . 4 ⊢ (∀𝑥 𝐴 ∈ V → (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴)) | |
16 | 15, 4 | mpg 1451 | . . 3 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
17 | 14, 16 | sylibr 134 | . 2 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |
18 | eusvnfb 4455 | . . . 4 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) | |
19 | 4, 18 | mpbiran2 941 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
20 | eusv2i 4456 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) | |
21 | 19, 20 | sylbir 135 | . 2 ⊢ (Ⅎ𝑥𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
22 | 17, 21 | impbii 126 | 1 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 Ⅎwnf 1460 ∃wex 1492 ∃!weu 2026 ∈ wcel 2148 Ⅎwnfc 2306 Vcvv 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2740 df-sbc 2964 df-csb 3059 df-un 3134 df-sn 3599 df-pr 3600 df-uni 3811 |
This theorem is referenced by: eusv2 4458 |
Copyright terms: Public domain | W3C validator |