| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfe1 | GIF version | ||
| Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1519 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | nfi 1486 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1484 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie1 1517 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nf3 1693 sb4or 1857 nfmo1 2067 euexex 2140 2moswapdc 2145 nfre1 2550 ceqsexg 2905 morex 2961 sbc6g 3027 intab 3920 nfopab1 4121 nfopab2 4122 copsexg 4296 copsex2t 4297 copsex2g 4298 eusv2nf 4511 onintonm 4573 mosubopt 4748 dmcoss 4957 imadif 5363 funimaexglem 5366 nfoprab1 6007 nfoprab2 6008 nfoprab3 6009 exmidfodomrlemr 7326 exmidfodomrlemrALT 7327 dfgrp3mlem 13505 |
| Copyright terms: Public domain | W3C validator |