Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfe1 | GIF version |
Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 1483 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
2 | 1 | nfi 1450 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1448 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie1 1481 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nf3 1657 sb4or 1821 nfmo1 2026 euexex 2099 2moswapdc 2104 nfre1 2509 ceqsexg 2854 morex 2910 sbc6g 2975 rgenm 3511 intab 3853 nfopab1 4051 nfopab2 4052 copsexg 4222 copsex2t 4223 copsex2g 4224 eusv2nf 4434 onintonm 4494 mosubopt 4669 dmcoss 4873 imadif 5268 funimaexglem 5271 nfoprab1 5891 nfoprab2 5892 nfoprab3 5893 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 |
Copyright terms: Public domain | W3C validator |