![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfe1 | GIF version |
Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 1506 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
2 | 1 | nfi 1473 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1471 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie1 1504 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: nf3 1680 sb4or 1844 nfmo1 2054 euexex 2127 2moswapdc 2132 nfre1 2537 ceqsexg 2889 morex 2945 sbc6g 3011 intab 3900 nfopab1 4099 nfopab2 4100 copsexg 4274 copsex2t 4275 copsex2g 4276 eusv2nf 4488 onintonm 4550 mosubopt 4725 dmcoss 4932 imadif 5335 funimaexglem 5338 nfoprab1 5968 nfoprab2 5969 nfoprab3 5970 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 dfgrp3mlem 13173 |
Copyright terms: Public domain | W3C validator |