ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfe1 GIF version

Theorem nfe1 1489
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfe1 𝑥𝑥𝜑

Proof of Theorem nfe1
StepHypRef Expression
1 hbe1 1488 . 2 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
21nfi 1455 1 𝑥𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1453  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-ie1 1486
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  nf3  1662  sb4or  1826  nfmo1  2031  euexex  2104  2moswapdc  2109  nfre1  2513  ceqsexg  2858  morex  2914  sbc6g  2979  rgenm  3517  intab  3860  nfopab1  4058  nfopab2  4059  copsexg  4229  copsex2t  4230  copsex2g  4231  eusv2nf  4441  onintonm  4501  mosubopt  4676  dmcoss  4880  imadif  5278  funimaexglem  5281  nfoprab1  5902  nfoprab2  5903  nfoprab3  5904  exmidfodomrlemr  7179  exmidfodomrlemrALT  7180
  Copyright terms: Public domain W3C validator