ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfe1 GIF version

Theorem nfe1 1496
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfe1 𝑥𝑥𝜑

Proof of Theorem nfe1
StepHypRef Expression
1 hbe1 1495 . 2 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
21nfi 1462 1 𝑥𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1460  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1449  ax-ie1 1493
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  nf3  1669  sb4or  1833  nfmo1  2038  euexex  2111  2moswapdc  2116  nfre1  2520  ceqsexg  2866  morex  2922  sbc6g  2988  rgenm  3526  intab  3874  nfopab1  4073  nfopab2  4074  copsexg  4245  copsex2t  4246  copsex2g  4247  eusv2nf  4457  onintonm  4517  mosubopt  4692  dmcoss  4897  imadif  5297  funimaexglem  5300  nfoprab1  5924  nfoprab2  5925  nfoprab3  5926  exmidfodomrlemr  7201  exmidfodomrlemrALT  7202  dfgrp3mlem  12968
  Copyright terms: Public domain W3C validator