| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfe1 | GIF version | ||
| Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1541 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | nfi 1508 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1506 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie1 1539 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: nf3 1715 sb4or 1879 nfmo1 2089 euexex 2163 2moswapdc 2168 nfre1 2573 ceqsexg 2931 morex 2987 sbc6g 3053 intab 3951 nfopab1 4152 nfopab2 4153 copsexg 4329 copsex2t 4330 copsex2g 4331 eusv2nf 4546 onintonm 4608 mosubopt 4783 dmcoss 4993 imadif 5400 funimaexglem 5403 nfoprab1 6052 nfoprab2 6053 nfoprab3 6054 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 dfgrp3mlem 13626 |
| Copyright terms: Public domain | W3C validator |