| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfe1 | GIF version | ||
| Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1509 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | nfi 1476 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie1 1507 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nf3 1683 sb4or 1847 nfmo1 2057 euexex 2130 2moswapdc 2135 nfre1 2540 ceqsexg 2892 morex 2948 sbc6g 3014 intab 3904 nfopab1 4103 nfopab2 4104 copsexg 4278 copsex2t 4279 copsex2g 4280 eusv2nf 4492 onintonm 4554 mosubopt 4729 dmcoss 4936 imadif 5339 funimaexglem 5342 nfoprab1 5975 nfoprab2 5976 nfoprab3 5977 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 dfgrp3mlem 13300 |
| Copyright terms: Public domain | W3C validator |