Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfe1 | GIF version |
Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfe1 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 1488 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
2 | 1 | nfi 1455 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1453 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie1 1486 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nf3 1662 sb4or 1826 nfmo1 2031 euexex 2104 2moswapdc 2109 nfre1 2513 ceqsexg 2858 morex 2914 sbc6g 2979 rgenm 3517 intab 3860 nfopab1 4058 nfopab2 4059 copsexg 4229 copsex2t 4230 copsex2g 4231 eusv2nf 4441 onintonm 4501 mosubopt 4676 dmcoss 4880 imadif 5278 funimaexglem 5281 nfoprab1 5902 nfoprab2 5903 nfoprab3 5904 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 |
Copyright terms: Public domain | W3C validator |