ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfceqdf GIF version

Theorem nfceqdf 2335
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfceqdf.1 𝑥𝜑
nfceqdf.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
nfceqdf (𝜑 → (𝑥𝐴𝑥𝐵))

Proof of Theorem nfceqdf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfceqdf.1 . . . 4 𝑥𝜑
2 nfceqdf.2 . . . . 5 (𝜑𝐴 = 𝐵)
32eleq2d 2263 . . . 4 (𝜑 → (𝑦𝐴𝑦𝐵))
41, 3nfbidf 1550 . . 3 (𝜑 → (Ⅎ𝑥 𝑦𝐴 ↔ Ⅎ𝑥 𝑦𝐵))
54albidv 1835 . 2 (𝜑 → (∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑦𝑥 𝑦𝐵))
6 df-nfc 2325 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
7 df-nfc 2325 . 2 (𝑥𝐵 ↔ ∀𝑦𝑥 𝑦𝐵)
85, 6, 73bitr4g 223 1 (𝜑 → (𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wnf 1471  wcel 2164  wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-cleq 2186  df-clel 2189  df-nfc 2325
This theorem is referenced by:  nfopd  3821  dfnfc2  3853  nfimad  5014  nffvd  5566
  Copyright terms: Public domain W3C validator