ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfceqdf GIF version

Theorem nfceqdf 2222
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfceqdf.1 𝑥𝜑
nfceqdf.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
nfceqdf (𝜑 → (𝑥𝐴𝑥𝐵))

Proof of Theorem nfceqdf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfceqdf.1 . . . 4 𝑥𝜑
2 nfceqdf.2 . . . . 5 (𝜑𝐴 = 𝐵)
32eleq2d 2152 . . . 4 (𝜑 → (𝑦𝐴𝑦𝐵))
41, 3nfbidf 1473 . . 3 (𝜑 → (Ⅎ𝑥 𝑦𝐴 ↔ Ⅎ𝑥 𝑦𝐵))
54albidv 1747 . 2 (𝜑 → (∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑦𝑥 𝑦𝐵))
6 df-nfc 2212 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
7 df-nfc 2212 . 2 (𝑥𝐵 ↔ ∀𝑦𝑥 𝑦𝐵)
85, 6, 73bitr4g 221 1 (𝜑 → (𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1283   = wceq 1285  wnf 1390  wcel 1434  wnfc 2210
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-17 1460  ax-ial 1468  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-cleq 2076  df-clel 2079  df-nfc 2212
This theorem is referenced by:  nfopd  3613  dfnfc2  3645  nfimad  4736  nffvd  5260
  Copyright terms: Public domain W3C validator