| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfceqdf | GIF version | ||
| Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfceqdf.1 | ⊢ Ⅎ𝑥𝜑 |
| nfceqdf.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| nfceqdf | ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfceqdf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfceqdf.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eleq2d 2266 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 4 | 1, 3 | nfbidf 1553 | . . 3 ⊢ (𝜑 → (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐵)) |
| 5 | 4 | albidv 1838 | . 2 ⊢ (𝜑 → (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵)) |
| 6 | df-nfc 2328 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 7 | df-nfc 2328 | . 2 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: nfopd 3825 dfnfc2 3857 nfimad 5018 nffvd 5570 |
| Copyright terms: Public domain | W3C validator |