| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfald | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 6-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfald.1 | ⊢ Ⅎ𝑦𝜑 |
| nfald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfald | ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1543 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | nfald.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 2, 3 | alrimih 1493 | . 2 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥𝜓) |
| 5 | nfnf1 1568 | . . . 4 ⊢ Ⅎ𝑥Ⅎ𝑥𝜓 | |
| 6 | 5 | nfal 1600 | . . 3 ⊢ Ⅎ𝑥∀𝑦Ⅎ𝑥𝜓 |
| 7 | hba1 1564 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜓 → ∀𝑦∀𝑦Ⅎ𝑥𝜓) | |
| 8 | sp 1535 | . . . . 5 ⊢ (∀𝑦Ⅎ𝑥𝜓 → Ⅎ𝑥𝜓) | |
| 9 | 8 | nfrd 1544 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) |
| 10 | 7, 9 | hbald 1515 | . . 3 ⊢ (∀𝑦Ⅎ𝑥𝜓 → (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) |
| 11 | 6, 10 | nfd 1547 | . 2 ⊢ (∀𝑦Ⅎ𝑥𝜓 → Ⅎ𝑥∀𝑦𝜓) |
| 12 | 4, 11 | syl 14 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: dvelimALT 2039 dvelimfv 2040 nfeudv 2070 nfeqd 2364 nfraldw 2539 nfraldxy 2540 nfiotadw 5249 nfixpxy 6822 bdsepnft 15992 |
| Copyright terms: Public domain | W3C validator |