ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfald GIF version

Theorem nfald 1806
Description: If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 6-Jan-2018.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfald (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfald
StepHypRef Expression
1 nfald.1 . . . 4 𝑦𝜑
21nfri 1565 . . 3 (𝜑 → ∀𝑦𝜑)
3 nfald.2 . . 3 (𝜑 → Ⅎ𝑥𝜓)
42, 3alrimih 1515 . 2 (𝜑 → ∀𝑦𝑥𝜓)
5 nfnf1 1590 . . . 4 𝑥𝑥𝜓
65nfal 1622 . . 3 𝑥𝑦𝑥𝜓
7 hba1 1586 . . . 4 (∀𝑦𝑥𝜓 → ∀𝑦𝑦𝑥𝜓)
8 sp 1557 . . . . 5 (∀𝑦𝑥𝜓 → Ⅎ𝑥𝜓)
98nfrd 1566 . . . 4 (∀𝑦𝑥𝜓 → (𝜓 → ∀𝑥𝜓))
107, 9hbald 1537 . . 3 (∀𝑦𝑥𝜓 → (∀𝑦𝜓 → ∀𝑥𝑦𝜓))
116, 10nfd 1569 . 2 (∀𝑦𝑥𝜓 → Ⅎ𝑥𝑦𝜓)
124, 11syl 14 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wnf 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  dvelimALT  2061  dvelimfv  2062  nfeudv  2092  nfeqd  2387  nfraldw  2562  nfraldxy  2563  nfiotadw  5280  nfixpxy  6862  bdsepnft  16208
  Copyright terms: Public domain W3C validator