Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsb4t | GIF version |
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2000). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.) |
Ref | Expression |
---|---|
nfsb4t | ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnf1 1532 | . . . . 5 ⊢ Ⅎ𝑧Ⅎ𝑧𝜑 | |
2 | 1 | nfal 1564 | . . . 4 ⊢ Ⅎ𝑧∀𝑥Ⅎ𝑧𝜑 |
3 | nfnae 1710 | . . . 4 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑦 | |
4 | 2, 3 | nfan 1553 | . . 3 ⊢ Ⅎ𝑧(∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) |
5 | df-nf 1449 | . . . . . 6 ⊢ (Ⅎ𝑧𝜑 ↔ ∀𝑧(𝜑 → ∀𝑧𝜑)) | |
6 | 5 | albii 1458 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑧𝜑 ↔ ∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑)) |
7 | hbsb4t 2001 | . . . . 5 ⊢ (∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) | |
8 | 6, 7 | sylbi 120 | . . . 4 ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) |
9 | 8 | imp 123 | . . 3 ⊢ ((∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)) |
10 | 4, 9 | nfd 1511 | . 2 ⊢ ((∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
11 | 10 | ex 114 | 1 ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1341 Ⅎwnf 1448 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 |
This theorem is referenced by: dvelimdf 2004 |
Copyright terms: Public domain | W3C validator |