ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb4t GIF version

Theorem nfsb4t 2002
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2000). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.)
Assertion
Ref Expression
nfsb4t (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))

Proof of Theorem nfsb4t
StepHypRef Expression
1 nfnf1 1532 . . . . 5 𝑧𝑧𝜑
21nfal 1564 . . . 4 𝑧𝑥𝑧𝜑
3 nfnae 1710 . . . 4 𝑧 ¬ ∀𝑧 𝑧 = 𝑦
42, 3nfan 1553 . . 3 𝑧(∀𝑥𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦)
5 df-nf 1449 . . . . . 6 (Ⅎ𝑧𝜑 ↔ ∀𝑧(𝜑 → ∀𝑧𝜑))
65albii 1458 . . . . 5 (∀𝑥𝑧𝜑 ↔ ∀𝑥𝑧(𝜑 → ∀𝑧𝜑))
7 hbsb4t 2001 . . . . 5 (∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
86, 7sylbi 120 . . . 4 (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
98imp 123 . . 3 ((∀𝑥𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))
104, 9nfd 1511 . 2 ((∀𝑥𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
1110ex 114 1 (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1341  wnf 1448  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751
This theorem is referenced by:  dvelimdf  2004
  Copyright terms: Public domain W3C validator