![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsb4t | GIF version |
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2022). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.) |
Ref | Expression |
---|---|
nfsb4t | ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnf1 1554 | . . . . 5 ⊢ Ⅎ𝑧Ⅎ𝑧𝜑 | |
2 | 1 | nfal 1586 | . . . 4 ⊢ Ⅎ𝑧∀𝑥Ⅎ𝑧𝜑 |
3 | nfnae 1732 | . . . 4 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑦 | |
4 | 2, 3 | nfan 1575 | . . 3 ⊢ Ⅎ𝑧(∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) |
5 | df-nf 1471 | . . . . . 6 ⊢ (Ⅎ𝑧𝜑 ↔ ∀𝑧(𝜑 → ∀𝑧𝜑)) | |
6 | 5 | albii 1480 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑧𝜑 ↔ ∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑)) |
7 | hbsb4t 2023 | . . . . 5 ⊢ (∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) | |
8 | 6, 7 | sylbi 121 | . . . 4 ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) |
9 | 8 | imp 124 | . . 3 ⊢ ((∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)) |
10 | 4, 9 | nfd 1533 | . 2 ⊢ ((∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
11 | 10 | ex 115 | 1 ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1361 Ⅎwnf 1470 [wsb 1772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 |
This theorem is referenced by: dvelimdf 2026 |
Copyright terms: Public domain | W3C validator |