ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb4t GIF version

Theorem nfsb4t 2065
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2063). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.)
Assertion
Ref Expression
nfsb4t (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))

Proof of Theorem nfsb4t
StepHypRef Expression
1 nfnf1 1590 . . . . 5 𝑧𝑧𝜑
21nfal 1622 . . . 4 𝑧𝑥𝑧𝜑
3 nfnae 1768 . . . 4 𝑧 ¬ ∀𝑧 𝑧 = 𝑦
42, 3nfan 1611 . . 3 𝑧(∀𝑥𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦)
5 df-nf 1507 . . . . . 6 (Ⅎ𝑧𝜑 ↔ ∀𝑧(𝜑 → ∀𝑧𝜑))
65albii 1516 . . . . 5 (∀𝑥𝑧𝜑 ↔ ∀𝑥𝑧(𝜑 → ∀𝑧𝜑))
7 hbsb4t 2064 . . . . 5 (∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
86, 7sylbi 121 . . . 4 (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
98imp 124 . . 3 ((∀𝑥𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))
104, 9nfd 1569 . 2 ((∀𝑥𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
1110ex 115 1 (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1393  wnf 1506  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809
This theorem is referenced by:  dvelimdf  2067
  Copyright terms: Public domain W3C validator