![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsb4t | GIF version |
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2012). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.) |
Ref | Expression |
---|---|
nfsb4t | ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnf1 1544 | . . . . 5 ⊢ Ⅎ𝑧Ⅎ𝑧𝜑 | |
2 | 1 | nfal 1576 | . . . 4 ⊢ Ⅎ𝑧∀𝑥Ⅎ𝑧𝜑 |
3 | nfnae 1722 | . . . 4 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑦 | |
4 | 2, 3 | nfan 1565 | . . 3 ⊢ Ⅎ𝑧(∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) |
5 | df-nf 1461 | . . . . . 6 ⊢ (Ⅎ𝑧𝜑 ↔ ∀𝑧(𝜑 → ∀𝑧𝜑)) | |
6 | 5 | albii 1470 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑧𝜑 ↔ ∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑)) |
7 | hbsb4t 2013 | . . . . 5 ⊢ (∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) | |
8 | 6, 7 | sylbi 121 | . . . 4 ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) |
9 | 8 | imp 124 | . . 3 ⊢ ((∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)) |
10 | 4, 9 | nfd 1523 | . 2 ⊢ ((∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
11 | 10 | ex 115 | 1 ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1351 Ⅎwnf 1460 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 |
This theorem is referenced by: dvelimdf 2016 |
Copyright terms: Public domain | W3C validator |