ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb4t GIF version

Theorem nfsb4t 2030
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2028). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.)
Assertion
Ref Expression
nfsb4t (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))

Proof of Theorem nfsb4t
StepHypRef Expression
1 nfnf1 1555 . . . . 5 𝑧𝑧𝜑
21nfal 1587 . . . 4 𝑧𝑥𝑧𝜑
3 nfnae 1733 . . . 4 𝑧 ¬ ∀𝑧 𝑧 = 𝑦
42, 3nfan 1576 . . 3 𝑧(∀𝑥𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦)
5 df-nf 1472 . . . . . 6 (Ⅎ𝑧𝜑 ↔ ∀𝑧(𝜑 → ∀𝑧𝜑))
65albii 1481 . . . . 5 (∀𝑥𝑧𝜑 ↔ ∀𝑥𝑧(𝜑 → ∀𝑧𝜑))
7 hbsb4t 2029 . . . . 5 (∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
86, 7sylbi 121 . . . 4 (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
98imp 124 . . 3 ((∀𝑥𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))
104, 9nfd 1534 . 2 ((∀𝑥𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
1110ex 115 1 (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1362  wnf 1471  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774
This theorem is referenced by:  dvelimdf  2032
  Copyright terms: Public domain W3C validator