| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbeud | GIF version | ||
| Description: Deduction version of hbeu 2066. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.) |
| Ref | Expression |
|---|---|
| hbeud.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hbeud.2 | ⊢ (𝜑 → ∀𝑦𝜑) |
| hbeud.3 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Ref | Expression |
|---|---|
| hbeud | ⊢ (𝜑 → (∃!𝑦𝜓 → ∀𝑥∃!𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbeud.2 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | nfi 1476 | . . 3 ⊢ Ⅎ𝑦𝜑 |
| 3 | hbeud.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 4 | 3 | nfi 1476 | . . . 4 ⊢ Ⅎ𝑥𝜑 |
| 5 | hbeud.3 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 6 | 4, 5 | nfd 1537 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 7 | 2, 6 | nfeud 2061 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
| 8 | 7 | nfrd 1534 | 1 ⊢ (𝜑 → (∃!𝑦𝜓 → ∀𝑥∃!𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∃!weu 2045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |