Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbeud | GIF version |
Description: Deduction version of hbeu 2035. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.) |
Ref | Expression |
---|---|
hbeud.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
hbeud.2 | ⊢ (𝜑 → ∀𝑦𝜑) |
hbeud.3 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
hbeud | ⊢ (𝜑 → (∃!𝑦𝜓 → ∀𝑥∃!𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbeud.2 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | 1 | nfi 1450 | . . 3 ⊢ Ⅎ𝑦𝜑 |
3 | hbeud.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
4 | 3 | nfi 1450 | . . . 4 ⊢ Ⅎ𝑥𝜑 |
5 | hbeud.3 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
6 | 4, 5 | nfd 1511 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
7 | 2, 6 | nfeud 2030 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
8 | 7 | nfrd 1508 | 1 ⊢ (𝜑 → (∃!𝑦𝜓 → ∀𝑥∃!𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∃!weu 2014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |