ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwnss GIF version

Theorem pwnss 4156
Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwnss (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)

Proof of Theorem pwnss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq12 2242 . . . . . . 7 ((𝑦 = {𝑥𝐴𝑥𝑥} ∧ 𝑦 = {𝑥𝐴𝑥𝑥}) → (𝑦𝑦 ↔ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
21anidms 397 . . . . . 6 (𝑦 = {𝑥𝐴𝑥𝑥} → (𝑦𝑦 ↔ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
32notbid 667 . . . . 5 (𝑦 = {𝑥𝐴𝑥𝑥} → (¬ 𝑦𝑦 ↔ ¬ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
4 df-nel 2443 . . . . . . 7 (𝑥𝑥 ↔ ¬ 𝑥𝑥)
5 eleq12 2242 . . . . . . . . 9 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥𝑥𝑦𝑦))
65anidms 397 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
76notbid 667 . . . . . . 7 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
84, 7bitrid 192 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑥 ↔ ¬ 𝑦𝑦))
98cbvrabv 2736 . . . . 5 {𝑥𝐴𝑥𝑥} = {𝑦𝐴 ∣ ¬ 𝑦𝑦}
103, 9elrab2 2896 . . . 4 ({𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥} ↔ ({𝑥𝐴𝑥𝑥} ∈ 𝐴 ∧ ¬ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
11 pclem6 1374 . . . 4 (({𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥} ↔ ({𝑥𝐴𝑥𝑥} ∈ 𝐴 ∧ ¬ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥})) → ¬ {𝑥𝐴𝑥𝑥} ∈ 𝐴)
1210, 11ax-mp 5 . . 3 ¬ {𝑥𝐴𝑥𝑥} ∈ 𝐴
13 ssel 3149 . . 3 (𝒫 𝐴𝐴 → ({𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴 → {𝑥𝐴𝑥𝑥} ∈ 𝐴))
1412, 13mtoi 664 . 2 (𝒫 𝐴𝐴 → ¬ {𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴)
15 ssrab2 3240 . . 3 {𝑥𝐴𝑥𝑥} ⊆ 𝐴
16 elpw2g 4153 . . 3 (𝐴𝑉 → ({𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴 ↔ {𝑥𝐴𝑥𝑥} ⊆ 𝐴))
1715, 16mpbiri 168 . 2 (𝐴𝑉 → {𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴)
1814, 17nsyl3 626 1 (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wnel 2442  {crab 2459  wss 3129  𝒫 cpw 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4118
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-nel 2443  df-rab 2464  df-v 2739  df-in 3135  df-ss 3142  df-pw 3576
This theorem is referenced by:  pwne  4157  pwuninel2  6277
  Copyright terms: Public domain W3C validator