| Step | Hyp | Ref
 | Expression | 
| 1 |   | iseqf1olemstep.k | 
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | 
| 2 |   | elfzel1 10099 | 
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | 
| 3 | 1, 2 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 4 | 3 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝑀 ∈ ℤ) | 
| 5 |   | elfzelz 10100 | 
. . . . . . . . 9
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | 
| 6 | 1, 5 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℤ) | 
| 7 | 6 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝐾 ∈ ℤ) | 
| 8 |   | peano2zm 9364 | 
. . . . . . 7
⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈
ℤ) | 
| 9 | 7, 8 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (𝐾 − 1) ∈ ℤ) | 
| 10 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝑀 < 𝐾) | 
| 11 |   | zltlem1 9383 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ 𝑀 ≤ (𝐾 − 1))) | 
| 12 | 4, 7, 11 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (𝑀 < 𝐾 ↔ 𝑀 ≤ (𝐾 − 1))) | 
| 13 | 10, 12 | mpbid 147 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝑀 ≤ (𝐾 − 1)) | 
| 14 |   | eluz2 9607 | 
. . . . . 6
⊢ ((𝐾 − 1) ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝐾 − 1))) | 
| 15 | 4, 9, 13, 14 | syl3anbrc 1183 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (𝐾 − 1) ∈
(ℤ≥‘𝑀)) | 
| 16 | 3 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑀 ∈ ℤ) | 
| 17 |   | elfzel2 10098 | 
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | 
| 18 | 1, 17 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 19 | 18 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ ℤ) | 
| 20 |   | elfzelz 10100 | 
. . . . . . . . . . 11
⊢ (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑏 ∈ ℤ) | 
| 21 | 20 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ ℤ) | 
| 22 |   | elfzle1 10102 | 
. . . . . . . . . . 11
⊢ (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑀 ≤ 𝑏) | 
| 23 | 22 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑀 ≤ 𝑏) | 
| 24 | 21 | zred 9448 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ ℝ) | 
| 25 | 6 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ∈ ℤ) | 
| 26 | 25 | zred 9448 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ∈ ℝ) | 
| 27 | 19 | zred 9448 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ ℝ) | 
| 28 |   | peano2rem 8293 | 
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ ℝ → (𝐾 − 1) ∈
ℝ) | 
| 29 | 26, 28 | syl 14 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ) | 
| 30 |   | elfzle2 10103 | 
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑏 ≤ (𝐾 − 1)) | 
| 31 | 30 | adantl 277 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ≤ (𝐾 − 1)) | 
| 32 | 26 | lem1d 8960 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐾 − 1) ≤ 𝐾) | 
| 33 | 24, 29, 26, 31, 32 | letrd 8150 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ≤ 𝐾) | 
| 34 |   | elfzle2 10103 | 
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) | 
| 35 | 1, 34 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ≤ 𝑁) | 
| 36 | 35 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ≤ 𝑁) | 
| 37 | 24, 26, 27, 33, 36 | letrd 8150 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ≤ 𝑁) | 
| 38 |   | elfz4 10093 | 
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑀 ≤ 𝑏 ∧ 𝑏 ≤ 𝑁)) → 𝑏 ∈ (𝑀...𝑁)) | 
| 39 | 16, 19, 21, 23, 37, 38 | syl32anc 1257 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ (𝑀...𝑁)) | 
| 40 |   | elfzel1 10099 | 
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ∈ ℤ) | 
| 41 | 40 | zred 9448 | 
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ∈ ℝ) | 
| 42 |   | elfzelz 10100 | 
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝑏 ∈ ℤ) | 
| 43 | 42 | zred 9448 | 
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝑏 ∈ ℝ) | 
| 44 |   | elfzle1 10102 | 
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ≤ 𝑏) | 
| 45 | 41, 43, 44 | lensymd 8148 | 
. . . . . . . . . . . 12
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → ¬ 𝑏 < 𝐾) | 
| 46 |   | zltlem1 9383 | 
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑏 < 𝐾 ↔ 𝑏 ≤ (𝐾 − 1))) | 
| 47 | 21, 25, 46 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑏 < 𝐾 ↔ 𝑏 ≤ (𝐾 − 1))) | 
| 48 | 31, 47 | mpbird 167 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 < 𝐾) | 
| 49 | 45, 48 | nsyl3 627 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → ¬ 𝑏 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 50 | 49 | iffalsed 3571 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏)) = (𝐽‘𝑏)) | 
| 51 |   | iseqf1olemstep.j | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 52 |   | f1of 5504 | 
. . . . . . . . . . . . 13
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 53 | 51, 52 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 54 | 53 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 55 | 54, 39 | ffvelcdmd 5698 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐽‘𝑏) ∈ (𝑀...𝑁)) | 
| 56 | 50, 55 | eqeltrd 2273 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏)) ∈ (𝑀...𝑁)) | 
| 57 |   | eleq1w 2257 | 
. . . . . . . . . . 11
⊢ (𝑢 = 𝑏 → (𝑢 ∈ (𝐾...(◡𝐽‘𝐾)) ↔ 𝑏 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 58 |   | eqeq1 2203 | 
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑏 → (𝑢 = 𝐾 ↔ 𝑏 = 𝐾)) | 
| 59 |   | fvoveq1 5945 | 
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑏 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝑏 − 1))) | 
| 60 | 58, 59 | ifbieq2d 3585 | 
. . . . . . . . . . 11
⊢ (𝑢 = 𝑏 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1)))) | 
| 61 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑢 = 𝑏 → (𝐽‘𝑢) = (𝐽‘𝑏)) | 
| 62 | 57, 60, 61 | ifbieq12d 3587 | 
. . . . . . . . . 10
⊢ (𝑢 = 𝑏 → if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)) = if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏))) | 
| 63 |   | iseqf1olemqres.q | 
. . . . . . . . . 10
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | 
| 64 | 62, 63 | fvmptg 5637 | 
. . . . . . . . 9
⊢ ((𝑏 ∈ (𝑀...𝑁) ∧ if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏)) ∈ (𝑀...𝑁)) → (𝑄‘𝑏) = if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏))) | 
| 65 | 39, 56, 64 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄‘𝑏) = if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏))) | 
| 66 | 65, 50 | eqtrd 2229 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄‘𝑏) = (𝐽‘𝑏)) | 
| 67 | 66 | fveq2d 5562 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝑄‘𝑏)) = (𝐺‘(𝐽‘𝑏))) | 
| 68 |   | iseqf1olemqsumk.p | 
. . . . . . . . . . 11
⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) | 
| 69 | 68 | csbeq2i 3111 | 
. . . . . . . . . 10
⊢
⦋𝑄 /
𝑓⦌𝑃 = ⦋𝑄 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) | 
| 70 | 3, 18 | fzfigd 10523 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | 
| 71 |   | mptexg 5787 | 
. . . . . . . . . . . . 13
⊢ ((𝑀...𝑁) ∈ Fin → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ∈ V) | 
| 72 | 70, 71 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ∈ V) | 
| 73 | 63, 72 | eqeltrid 2283 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ V) | 
| 74 |   | nfcvd 2340 | 
. . . . . . . . . . . 12
⊢ (𝑄 ∈ V →
Ⅎ𝑓(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) | 
| 75 |   | fveq1 5557 | 
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑄 → (𝑓‘𝑥) = (𝑄‘𝑥)) | 
| 76 | 75 | fveq2d 5562 | 
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑄 → (𝐺‘(𝑓‘𝑥)) = (𝐺‘(𝑄‘𝑥))) | 
| 77 | 76 | ifeq1d 3578 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑄 → if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀))) | 
| 78 | 77 | mpteq2dv 4124 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑄 → (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) | 
| 79 | 74, 78 | csbiegf 3128 | 
. . . . . . . . . . 11
⊢ (𝑄 ∈ V →
⦋𝑄 / 𝑓⦌(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) | 
| 80 | 73, 79 | syl 14 | 
. . . . . . . . . 10
⊢ (𝜑 → ⦋𝑄 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) | 
| 81 | 69, 80 | eqtrid 2241 | 
. . . . . . . . 9
⊢ (𝜑 → ⦋𝑄 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) | 
| 82 | 81 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → ⦋𝑄 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) | 
| 83 |   | breq1 4036 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑏 → (𝑥 ≤ 𝑁 ↔ 𝑏 ≤ 𝑁)) | 
| 84 |   | 2fveq3 5563 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑏 → (𝐺‘(𝑄‘𝑥)) = (𝐺‘(𝑄‘𝑏))) | 
| 85 | 83, 84 | ifbieq1d 3583 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑏 → if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)) = if(𝑏 ≤ 𝑁, (𝐺‘(𝑄‘𝑏)), (𝐺‘𝑀))) | 
| 86 | 85 | adantl 277 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) ∧ 𝑥 = 𝑏) → if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)) = if(𝑏 ≤ 𝑁, (𝐺‘(𝑄‘𝑏)), (𝐺‘𝑀))) | 
| 87 |   | elfzuz 10096 | 
. . . . . . . . 9
⊢ (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑏 ∈ (ℤ≥‘𝑀)) | 
| 88 | 87 | adantl 277 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ (ℤ≥‘𝑀)) | 
| 89 | 37 | iftrued 3568 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ≤ 𝑁, (𝐺‘(𝑄‘𝑏)), (𝐺‘𝑀)) = (𝐺‘(𝑄‘𝑏))) | 
| 90 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑎 = (𝑄‘𝑏) → (𝐺‘𝑎) = (𝐺‘(𝑄‘𝑏))) | 
| 91 | 90 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (𝑎 = (𝑄‘𝑏) → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑄‘𝑏)) ∈ 𝑆)) | 
| 92 |   | iseqf1o.7 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) | 
| 93 | 92 | ralrimiva 2570 | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) | 
| 94 |   | fveq2 5558 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → (𝐺‘𝑥) = (𝐺‘𝑎)) | 
| 95 | 94 | eleq1d 2265 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → ((𝐺‘𝑥) ∈ 𝑆 ↔ (𝐺‘𝑎) ∈ 𝑆)) | 
| 96 | 95 | cbvralv 2729 | 
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) | 
| 97 | 93, 96 | sylib 122 | 
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) | 
| 98 | 97 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → ∀𝑎 ∈
(ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) | 
| 99 | 1, 51, 63 | iseqf1olemqf 10596 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 100 | 99 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 101 | 100, 39 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄‘𝑏) ∈ (𝑀...𝑁)) | 
| 102 |   | elfzuz 10096 | 
. . . . . . . . . . 11
⊢ ((𝑄‘𝑏) ∈ (𝑀...𝑁) → (𝑄‘𝑏) ∈ (ℤ≥‘𝑀)) | 
| 103 | 101, 102 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄‘𝑏) ∈ (ℤ≥‘𝑀)) | 
| 104 | 91, 98, 103 | rspcdva 2873 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝑄‘𝑏)) ∈ 𝑆) | 
| 105 | 89, 104 | eqeltrd 2273 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ≤ 𝑁, (𝐺‘(𝑄‘𝑏)), (𝐺‘𝑀)) ∈ 𝑆) | 
| 106 | 82, 86, 88, 105 | fvmptd 5642 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (⦋𝑄 / 𝑓⦌𝑃‘𝑏) = if(𝑏 ≤ 𝑁, (𝐺‘(𝑄‘𝑏)), (𝐺‘𝑀))) | 
| 107 | 106, 89 | eqtrd 2229 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (⦋𝑄 / 𝑓⦌𝑃‘𝑏) = (𝐺‘(𝑄‘𝑏))) | 
| 108 | 68 | csbeq2i 3111 | 
. . . . . . . . . 10
⊢
⦋𝐽 /
𝑓⦌𝑃 = ⦋𝐽 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) | 
| 109 |   | fex 5791 | 
. . . . . . . . . . . 12
⊢ ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝐽 ∈ V) | 
| 110 | 53, 70, 109 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ V) | 
| 111 |   | nfcvd 2340 | 
. . . . . . . . . . . 12
⊢ (𝐽 ∈ V →
Ⅎ𝑓(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) | 
| 112 |   | fveq1 5557 | 
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝐽 → (𝑓‘𝑥) = (𝐽‘𝑥)) | 
| 113 | 112 | fveq2d 5562 | 
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐽 → (𝐺‘(𝑓‘𝑥)) = (𝐺‘(𝐽‘𝑥))) | 
| 114 | 113 | ifeq1d 3578 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐽 → if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) = if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀))) | 
| 115 | 114 | mpteq2dv 4124 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐽 → (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) | 
| 116 | 111, 115 | csbiegf 3128 | 
. . . . . . . . . . 11
⊢ (𝐽 ∈ V →
⦋𝐽 / 𝑓⦌(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) | 
| 117 | 110, 116 | syl 14 | 
. . . . . . . . . 10
⊢ (𝜑 → ⦋𝐽 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) | 
| 118 | 108, 117 | eqtrid 2241 | 
. . . . . . . . 9
⊢ (𝜑 → ⦋𝐽 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) | 
| 119 | 118 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → ⦋𝐽 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) | 
| 120 |   | 2fveq3 5563 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑏 → (𝐺‘(𝐽‘𝑥)) = (𝐺‘(𝐽‘𝑏))) | 
| 121 | 83, 120 | ifbieq1d 3583 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑏 → if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)) = if(𝑏 ≤ 𝑁, (𝐺‘(𝐽‘𝑏)), (𝐺‘𝑀))) | 
| 122 | 121 | adantl 277 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) ∧ 𝑥 = 𝑏) → if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)) = if(𝑏 ≤ 𝑁, (𝐺‘(𝐽‘𝑏)), (𝐺‘𝑀))) | 
| 123 | 37 | iftrued 3568 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ≤ 𝑁, (𝐺‘(𝐽‘𝑏)), (𝐺‘𝑀)) = (𝐺‘(𝐽‘𝑏))) | 
| 124 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑎 = (𝐽‘𝑏) → (𝐺‘𝑎) = (𝐺‘(𝐽‘𝑏))) | 
| 125 | 124 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (𝑎 = (𝐽‘𝑏) → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘(𝐽‘𝑏)) ∈ 𝑆)) | 
| 126 |   | elfzuz 10096 | 
. . . . . . . . . . 11
⊢ ((𝐽‘𝑏) ∈ (𝑀...𝑁) → (𝐽‘𝑏) ∈ (ℤ≥‘𝑀)) | 
| 127 | 55, 126 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐽‘𝑏) ∈ (ℤ≥‘𝑀)) | 
| 128 | 125, 98, 127 | rspcdva 2873 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝐽‘𝑏)) ∈ 𝑆) | 
| 129 | 123, 128 | eqeltrd 2273 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ≤ 𝑁, (𝐺‘(𝐽‘𝑏)), (𝐺‘𝑀)) ∈ 𝑆) | 
| 130 | 119, 122,
88, 129 | fvmptd 5642 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (⦋𝐽 / 𝑓⦌𝑃‘𝑏) = if(𝑏 ≤ 𝑁, (𝐺‘(𝐽‘𝑏)), (𝐺‘𝑀))) | 
| 131 | 130, 123 | eqtrd 2229 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (⦋𝐽 / 𝑓⦌𝑃‘𝑏) = (𝐺‘(𝐽‘𝑏))) | 
| 132 | 67, 107, 131 | 3eqtr4rd 2240 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (⦋𝐽 / 𝑓⦌𝑃‘𝑏) = (⦋𝑄 / 𝑓⦌𝑃‘𝑏)) | 
| 133 | 1 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝐾 ∈ (𝑀...𝑁)) | 
| 134 | 51 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 135 | 92 | adantlr 477 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) | 
| 136 | 133, 134,
63, 135, 68 | iseqf1olemjpcl 10600 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) | 
| 137 | 133, 134,
63, 135, 68 | iseqf1olemqpcl 10601 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) | 
| 138 |   | iseqf1o.1 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 139 | 138 | adantlr 477 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 140 | 15, 132, 136, 137, 139 | seq3fveq 10571 | 
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘(𝐾 − 1)) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘(𝐾 − 1))) | 
| 141 |   | iseqf1o.2 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | 
| 142 |   | iseqf1o.3 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | 
| 143 |   | iseqf1o.4 | 
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 144 |   | iseqf1o.6 | 
. . . . . . 7
⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 145 |   | iseqf1olemstep.const | 
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) | 
| 146 |   | iseqf1olemnk | 
. . . . . . 7
⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) | 
| 147 | 138, 141,
142, 143, 144, 92, 1, 51, 145, 146, 63, 68 | seq3f1olemqsumk 10604 | 
. . . . . 6
⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | 
| 148 | 147 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | 
| 149 | 7 | zcnd 9449 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝐾 ∈ ℂ) | 
| 150 |   | npcan1 8404 | 
. . . . . . . 8
⊢ (𝐾 ∈ ℂ → ((𝐾 − 1) + 1) = 𝐾) | 
| 151 | 149, 150 | syl 14 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → ((𝐾 − 1) + 1) = 𝐾) | 
| 152 | 151 | seqeq1d 10545 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → seq((𝐾 − 1) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃) = seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)) | 
| 153 | 152 | fveq1d 5560 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq((𝐾 − 1) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁)) | 
| 154 | 151 | seqeq1d 10545 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → seq((𝐾 − 1) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃) = seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)) | 
| 155 | 154 | fveq1d 5560 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq((𝐾 − 1) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | 
| 156 | 148, 153,
155 | 3eqtr4d 2239 | 
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq((𝐾 − 1) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq((𝐾 − 1) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | 
| 157 | 140, 156 | oveq12d 5940 | 
. . 3
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → ((seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁)) = ((seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁))) | 
| 158 | 142 | adantlr 477 | 
. . . 4
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | 
| 159 |   | elfzuz3 10097 | 
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | 
| 160 | 1, 159 | syl 14 | 
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) | 
| 161 | 160 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝑁 ∈ (ℤ≥‘𝐾)) | 
| 162 | 151 | fveq2d 5562 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) →
(ℤ≥‘((𝐾 − 1) + 1)) =
(ℤ≥‘𝐾)) | 
| 163 | 161, 162 | eleqtrrd 2276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝑁 ∈
(ℤ≥‘((𝐾 − 1) + 1))) | 
| 164 | 139, 158,
163, 15, 136 | seq3split 10580 | 
. . 3
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = ((seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁))) | 
| 165 | 139, 158,
163, 15, 137 | seq3split 10580 | 
. . 3
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁) = ((seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁))) | 
| 166 | 157, 164,
165 | 3eqtr4d 2239 | 
. 2
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | 
| 167 | 147 | adantr 276 | 
. . 3
⊢ ((𝜑 ∧ 𝑀 = 𝐾) → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | 
| 168 |   | seqeq1 10542 | 
. . . . . 6
⊢ (𝑀 = 𝐾 → seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃) = seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)) | 
| 169 | 168 | fveq1d 5560 | 
. . . . 5
⊢ (𝑀 = 𝐾 → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁)) | 
| 170 |   | seqeq1 10542 | 
. . . . . 6
⊢ (𝑀 = 𝐾 → seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃) = seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)) | 
| 171 | 170 | fveq1d 5560 | 
. . . . 5
⊢ (𝑀 = 𝐾 → (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | 
| 172 | 169, 171 | eqeq12d 2211 | 
. . . 4
⊢ (𝑀 = 𝐾 → ((seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁) ↔ (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁))) | 
| 173 | 172 | adantl 277 | 
. . 3
⊢ ((𝜑 ∧ 𝑀 = 𝐾) → ((seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁) ↔ (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁))) | 
| 174 | 167, 173 | mpbird 167 | 
. 2
⊢ ((𝜑 ∧ 𝑀 = 𝐾) → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) | 
| 175 |   | elfzle1 10102 | 
. . . 4
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) | 
| 176 | 1, 175 | syl 14 | 
. . 3
⊢ (𝜑 → 𝑀 ≤ 𝐾) | 
| 177 |   | zleloe 9373 | 
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ≤ 𝐾 ↔ (𝑀 < 𝐾 ∨ 𝑀 = 𝐾))) | 
| 178 | 3, 6, 177 | syl2anc 411 | 
. . 3
⊢ (𝜑 → (𝑀 ≤ 𝐾 ↔ (𝑀 < 𝐾 ∨ 𝑀 = 𝐾))) | 
| 179 | 176, 178 | mpbid 147 | 
. 2
⊢ (𝜑 → (𝑀 < 𝐾 ∨ 𝑀 = 𝐾)) | 
| 180 | 166, 174,
179 | mpjaodan 799 | 
1
⊢ (𝜑 → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |