Step | Hyp | Ref
| Expression |
1 | | iseqf1olemstep.k |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
2 | | elfzel1 9905 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
3 | 1, 2 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | 3 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝑀 ∈ ℤ) |
5 | | elfzelz 9906 |
. . . . . . . . 9
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
6 | 1, 5 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℤ) |
7 | 6 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝐾 ∈ ℤ) |
8 | | peano2zm 9184 |
. . . . . . 7
⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈
ℤ) |
9 | 7, 8 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (𝐾 − 1) ∈ ℤ) |
10 | | simpr 109 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝑀 < 𝐾) |
11 | | zltlem1 9203 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ 𝑀 ≤ (𝐾 − 1))) |
12 | 4, 7, 11 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (𝑀 < 𝐾 ↔ 𝑀 ≤ (𝐾 − 1))) |
13 | 10, 12 | mpbid 146 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝑀 ≤ (𝐾 − 1)) |
14 | | eluz2 9424 |
. . . . . 6
⊢ ((𝐾 − 1) ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝐾 − 1))) |
15 | 4, 9, 13, 14 | syl3anbrc 1166 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (𝐾 − 1) ∈
(ℤ≥‘𝑀)) |
16 | 3 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑀 ∈ ℤ) |
17 | | elfzel2 9904 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
18 | 1, 17 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℤ) |
19 | 18 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ ℤ) |
20 | | elfzelz 9906 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑏 ∈ ℤ) |
21 | 20 | adantl 275 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ ℤ) |
22 | | elfzle1 9907 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑀 ≤ 𝑏) |
23 | 22 | adantl 275 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑀 ≤ 𝑏) |
24 | 21 | zred 9265 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ ℝ) |
25 | 6 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ∈ ℤ) |
26 | 25 | zred 9265 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ∈ ℝ) |
27 | 19 | zred 9265 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ ℝ) |
28 | | peano2rem 8121 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ ℝ → (𝐾 − 1) ∈
ℝ) |
29 | 26, 28 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ) |
30 | | elfzle2 9908 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑏 ≤ (𝐾 − 1)) |
31 | 30 | adantl 275 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ≤ (𝐾 − 1)) |
32 | 26 | lem1d 8783 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐾 − 1) ≤ 𝐾) |
33 | 24, 29, 26, 31, 32 | letrd 7978 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ≤ 𝐾) |
34 | | elfzle2 9908 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
35 | 1, 34 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ≤ 𝑁) |
36 | 35 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ≤ 𝑁) |
37 | 24, 26, 27, 33, 36 | letrd 7978 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ≤ 𝑁) |
38 | | elfz4 9899 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑀 ≤ 𝑏 ∧ 𝑏 ≤ 𝑁)) → 𝑏 ∈ (𝑀...𝑁)) |
39 | 16, 19, 21, 23, 37, 38 | syl32anc 1225 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ (𝑀...𝑁)) |
40 | | elfzel1 9905 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ∈ ℤ) |
41 | 40 | zred 9265 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ∈ ℝ) |
42 | | elfzelz 9906 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝑏 ∈ ℤ) |
43 | 42 | zred 9265 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝑏 ∈ ℝ) |
44 | | elfzle1 9907 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝐾 ≤ 𝑏) |
45 | 41, 43, 44 | lensymd 7976 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ (𝐾...(◡𝐽‘𝐾)) → ¬ 𝑏 < 𝐾) |
46 | | zltlem1 9203 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑏 < 𝐾 ↔ 𝑏 ≤ (𝐾 − 1))) |
47 | 21, 25, 46 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑏 < 𝐾 ↔ 𝑏 ≤ (𝐾 − 1))) |
48 | 31, 47 | mpbird 166 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 < 𝐾) |
49 | 45, 48 | nsyl3 616 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → ¬ 𝑏 ∈ (𝐾...(◡𝐽‘𝐾))) |
50 | 49 | iffalsed 3511 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏)) = (𝐽‘𝑏)) |
51 | | iseqf1olemstep.j |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
52 | | f1of 5407 |
. . . . . . . . . . . . 13
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
53 | 51, 52 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
54 | 53 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
55 | 54, 39 | ffvelrnd 5596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐽‘𝑏) ∈ (𝑀...𝑁)) |
56 | 50, 55 | eqeltrd 2231 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏)) ∈ (𝑀...𝑁)) |
57 | | eleq1w 2215 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑏 → (𝑢 ∈ (𝐾...(◡𝐽‘𝐾)) ↔ 𝑏 ∈ (𝐾...(◡𝐽‘𝐾)))) |
58 | | eqeq1 2161 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑏 → (𝑢 = 𝐾 ↔ 𝑏 = 𝐾)) |
59 | | fvoveq1 5837 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑏 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝑏 − 1))) |
60 | 58, 59 | ifbieq2d 3525 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑏 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1)))) |
61 | | fveq2 5461 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑏 → (𝐽‘𝑢) = (𝐽‘𝑏)) |
62 | 57, 60, 61 | ifbieq12d 3527 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑏 → if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)) = if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏))) |
63 | | iseqf1olemqres.q |
. . . . . . . . . 10
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
64 | 62, 63 | fvmptg 5537 |
. . . . . . . . 9
⊢ ((𝑏 ∈ (𝑀...𝑁) ∧ if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏)) ∈ (𝑀...𝑁)) → (𝑄‘𝑏) = if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏))) |
65 | 39, 56, 64 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄‘𝑏) = if(𝑏 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑏 = 𝐾, 𝐾, (𝐽‘(𝑏 − 1))), (𝐽‘𝑏))) |
66 | 65, 50 | eqtrd 2187 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄‘𝑏) = (𝐽‘𝑏)) |
67 | 66 | fveq2d 5465 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝑄‘𝑏)) = (𝐺‘(𝐽‘𝑏))) |
68 | | iseqf1olemqsumk.p |
. . . . . . . . . . 11
⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
69 | 68 | csbeq2i 3054 |
. . . . . . . . . 10
⊢
⦋𝑄 /
𝑓⦌𝑃 = ⦋𝑄 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
70 | 3, 18 | fzfigd 10308 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
71 | | mptexg 5685 |
. . . . . . . . . . . . 13
⊢ ((𝑀...𝑁) ∈ Fin → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ∈ V) |
72 | 70, 71 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ∈ V) |
73 | 63, 72 | eqeltrid 2241 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ V) |
74 | | nfcvd 2297 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ V →
Ⅎ𝑓(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) |
75 | | fveq1 5460 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑄 → (𝑓‘𝑥) = (𝑄‘𝑥)) |
76 | 75 | fveq2d 5465 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑄 → (𝐺‘(𝑓‘𝑥)) = (𝐺‘(𝑄‘𝑥))) |
77 | 76 | ifeq1d 3518 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑄 → if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀))) |
78 | 77 | mpteq2dv 4051 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑄 → (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) |
79 | 74, 78 | csbiegf 3070 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ V →
⦋𝑄 / 𝑓⦌(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) |
80 | 73, 79 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → ⦋𝑄 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) |
81 | 69, 80 | syl5eq 2199 |
. . . . . . . . 9
⊢ (𝜑 → ⦋𝑄 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) |
82 | 81 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → ⦋𝑄 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) |
83 | | breq1 3964 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑏 → (𝑥 ≤ 𝑁 ↔ 𝑏 ≤ 𝑁)) |
84 | | 2fveq3 5466 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑏 → (𝐺‘(𝑄‘𝑥)) = (𝐺‘(𝑄‘𝑏))) |
85 | 83, 84 | ifbieq1d 3523 |
. . . . . . . . 9
⊢ (𝑥 = 𝑏 → if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)) = if(𝑏 ≤ 𝑁, (𝐺‘(𝑄‘𝑏)), (𝐺‘𝑀))) |
86 | 85 | adantl 275 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) ∧ 𝑥 = 𝑏) → if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)) = if(𝑏 ≤ 𝑁, (𝐺‘(𝑄‘𝑏)), (𝐺‘𝑀))) |
87 | | elfzuz 9902 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝑀...(𝐾 − 1)) → 𝑏 ∈ (ℤ≥‘𝑀)) |
88 | 87 | adantl 275 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑏 ∈ (ℤ≥‘𝑀)) |
89 | 37 | iftrued 3508 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ≤ 𝑁, (𝐺‘(𝑄‘𝑏)), (𝐺‘𝑀)) = (𝐺‘(𝑄‘𝑏))) |
90 | | fveq2 5461 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑄‘𝑏) → (𝐺‘𝑎) = (𝐺‘(𝑄‘𝑏))) |
91 | 90 | eleq1d 2223 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑄‘𝑏) → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑄‘𝑏)) ∈ 𝑆)) |
92 | | iseqf1o.7 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
93 | 92 | ralrimiva 2527 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
94 | | fveq2 5461 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → (𝐺‘𝑥) = (𝐺‘𝑎)) |
95 | 94 | eleq1d 2223 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → ((𝐺‘𝑥) ∈ 𝑆 ↔ (𝐺‘𝑎) ∈ 𝑆)) |
96 | 95 | cbvralv 2677 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
97 | 93, 96 | sylib 121 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
98 | 97 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → ∀𝑎 ∈
(ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
99 | 1, 51, 63 | iseqf1olemqf 10368 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) |
100 | 99 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) |
101 | 100, 39 | ffvelrnd 5596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄‘𝑏) ∈ (𝑀...𝑁)) |
102 | | elfzuz 9902 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑏) ∈ (𝑀...𝑁) → (𝑄‘𝑏) ∈ (ℤ≥‘𝑀)) |
103 | 101, 102 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝑄‘𝑏) ∈ (ℤ≥‘𝑀)) |
104 | 91, 98, 103 | rspcdva 2818 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝑄‘𝑏)) ∈ 𝑆) |
105 | 89, 104 | eqeltrd 2231 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ≤ 𝑁, (𝐺‘(𝑄‘𝑏)), (𝐺‘𝑀)) ∈ 𝑆) |
106 | 82, 86, 88, 105 | fvmptd 5542 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (⦋𝑄 / 𝑓⦌𝑃‘𝑏) = if(𝑏 ≤ 𝑁, (𝐺‘(𝑄‘𝑏)), (𝐺‘𝑀))) |
107 | 106, 89 | eqtrd 2187 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (⦋𝑄 / 𝑓⦌𝑃‘𝑏) = (𝐺‘(𝑄‘𝑏))) |
108 | 68 | csbeq2i 3054 |
. . . . . . . . . 10
⊢
⦋𝐽 /
𝑓⦌𝑃 = ⦋𝐽 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
109 | | fex 5687 |
. . . . . . . . . . . 12
⊢ ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝐽 ∈ V) |
110 | 53, 70, 109 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ V) |
111 | | nfcvd 2297 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ V →
Ⅎ𝑓(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) |
112 | | fveq1 5460 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝐽 → (𝑓‘𝑥) = (𝐽‘𝑥)) |
113 | 112 | fveq2d 5465 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐽 → (𝐺‘(𝑓‘𝑥)) = (𝐺‘(𝐽‘𝑥))) |
114 | 113 | ifeq1d 3518 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐽 → if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) = if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀))) |
115 | 114 | mpteq2dv 4051 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐽 → (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) |
116 | 111, 115 | csbiegf 3070 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ V →
⦋𝐽 / 𝑓⦌(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) |
117 | 110, 116 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → ⦋𝐽 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) |
118 | 108, 117 | syl5eq 2199 |
. . . . . . . . 9
⊢ (𝜑 → ⦋𝐽 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) |
119 | 118 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → ⦋𝐽 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) |
120 | | 2fveq3 5466 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑏 → (𝐺‘(𝐽‘𝑥)) = (𝐺‘(𝐽‘𝑏))) |
121 | 83, 120 | ifbieq1d 3523 |
. . . . . . . . 9
⊢ (𝑥 = 𝑏 → if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)) = if(𝑏 ≤ 𝑁, (𝐺‘(𝐽‘𝑏)), (𝐺‘𝑀))) |
122 | 121 | adantl 275 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) ∧ 𝑥 = 𝑏) → if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)) = if(𝑏 ≤ 𝑁, (𝐺‘(𝐽‘𝑏)), (𝐺‘𝑀))) |
123 | 37 | iftrued 3508 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ≤ 𝑁, (𝐺‘(𝐽‘𝑏)), (𝐺‘𝑀)) = (𝐺‘(𝐽‘𝑏))) |
124 | | fveq2 5461 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝐽‘𝑏) → (𝐺‘𝑎) = (𝐺‘(𝐽‘𝑏))) |
125 | 124 | eleq1d 2223 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐽‘𝑏) → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘(𝐽‘𝑏)) ∈ 𝑆)) |
126 | | elfzuz 9902 |
. . . . . . . . . . 11
⊢ ((𝐽‘𝑏) ∈ (𝑀...𝑁) → (𝐽‘𝑏) ∈ (ℤ≥‘𝑀)) |
127 | 55, 126 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐽‘𝑏) ∈ (ℤ≥‘𝑀)) |
128 | 125, 98, 127 | rspcdva 2818 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝐽‘𝑏)) ∈ 𝑆) |
129 | 123, 128 | eqeltrd 2231 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → if(𝑏 ≤ 𝑁, (𝐺‘(𝐽‘𝑏)), (𝐺‘𝑀)) ∈ 𝑆) |
130 | 119, 122,
88, 129 | fvmptd 5542 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (⦋𝐽 / 𝑓⦌𝑃‘𝑏) = if(𝑏 ≤ 𝑁, (𝐺‘(𝐽‘𝑏)), (𝐺‘𝑀))) |
131 | 130, 123 | eqtrd 2187 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (⦋𝐽 / 𝑓⦌𝑃‘𝑏) = (𝐺‘(𝐽‘𝑏))) |
132 | 67, 107, 131 | 3eqtr4rd 2198 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑏 ∈ (𝑀...(𝐾 − 1))) → (⦋𝐽 / 𝑓⦌𝑃‘𝑏) = (⦋𝑄 / 𝑓⦌𝑃‘𝑏)) |
133 | 1 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝐾 ∈ (𝑀...𝑁)) |
134 | 51 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
135 | 92 | adantlr 469 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
136 | 133, 134,
63, 135, 68 | iseqf1olemjpcl 10372 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
137 | 133, 134,
63, 135, 68 | iseqf1olemqpcl 10373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
138 | | iseqf1o.1 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
139 | 138 | adantlr 469 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
140 | 15, 132, 136, 137, 139 | seq3fveq 10348 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘(𝐾 − 1)) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘(𝐾 − 1))) |
141 | | iseqf1o.2 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
142 | | iseqf1o.3 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
143 | | iseqf1o.4 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
144 | | iseqf1o.6 |
. . . . . . 7
⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
145 | | iseqf1olemstep.const |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
146 | | iseqf1olemnk |
. . . . . . 7
⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) |
147 | 138, 141,
142, 143, 144, 92, 1, 51, 145, 146, 63, 68 | seq3f1olemqsumk 10376 |
. . . . . 6
⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
148 | 147 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
149 | 7 | zcnd 9266 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝐾 ∈ ℂ) |
150 | | npcan1 8232 |
. . . . . . . 8
⊢ (𝐾 ∈ ℂ → ((𝐾 − 1) + 1) = 𝐾) |
151 | 149, 150 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → ((𝐾 − 1) + 1) = 𝐾) |
152 | 151 | seqeq1d 10328 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → seq((𝐾 − 1) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃) = seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)) |
153 | 152 | fveq1d 5463 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq((𝐾 − 1) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁)) |
154 | 151 | seqeq1d 10328 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → seq((𝐾 − 1) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃) = seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)) |
155 | 154 | fveq1d 5463 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq((𝐾 − 1) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
156 | 148, 153,
155 | 3eqtr4d 2197 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq((𝐾 − 1) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq((𝐾 − 1) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
157 | 140, 156 | oveq12d 5832 |
. . 3
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → ((seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁)) = ((seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁))) |
158 | 142 | adantlr 469 |
. . . 4
⊢ (((𝜑 ∧ 𝑀 < 𝐾) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
159 | | elfzuz3 9903 |
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
160 | 1, 159 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
161 | 160 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝑁 ∈ (ℤ≥‘𝐾)) |
162 | 151 | fveq2d 5465 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝐾) →
(ℤ≥‘((𝐾 − 1) + 1)) =
(ℤ≥‘𝐾)) |
163 | 161, 162 | eleqtrrd 2234 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → 𝑁 ∈
(ℤ≥‘((𝐾 − 1) + 1))) |
164 | 139, 158,
163, 15, 136 | seq3split 10356 |
. . 3
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = ((seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁))) |
165 | 139, 158,
163, 15, 137 | seq3split 10356 |
. . 3
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁) = ((seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁))) |
166 | 157, 164,
165 | 3eqtr4d 2197 |
. 2
⊢ ((𝜑 ∧ 𝑀 < 𝐾) → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
167 | 147 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ 𝑀 = 𝐾) → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
168 | | seqeq1 10325 |
. . . . . 6
⊢ (𝑀 = 𝐾 → seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃) = seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)) |
169 | 168 | fveq1d 5463 |
. . . . 5
⊢ (𝑀 = 𝐾 → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁)) |
170 | | seqeq1 10325 |
. . . . . 6
⊢ (𝑀 = 𝐾 → seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃) = seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)) |
171 | 170 | fveq1d 5463 |
. . . . 5
⊢ (𝑀 = 𝐾 → (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
172 | 169, 171 | eqeq12d 2169 |
. . . 4
⊢ (𝑀 = 𝐾 → ((seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁) ↔ (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁))) |
173 | 172 | adantl 275 |
. . 3
⊢ ((𝜑 ∧ 𝑀 = 𝐾) → ((seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁) ↔ (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁))) |
174 | 167, 173 | mpbird 166 |
. 2
⊢ ((𝜑 ∧ 𝑀 = 𝐾) → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
175 | | elfzle1 9907 |
. . . 4
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
176 | 1, 175 | syl 14 |
. . 3
⊢ (𝜑 → 𝑀 ≤ 𝐾) |
177 | | zleloe 9193 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ≤ 𝐾 ↔ (𝑀 < 𝐾 ∨ 𝑀 = 𝐾))) |
178 | 3, 6, 177 | syl2anc 409 |
. . 3
⊢ (𝜑 → (𝑀 ≤ 𝐾 ↔ (𝑀 < 𝐾 ∨ 𝑀 = 𝐾))) |
179 | 176, 178 | mpbid 146 |
. 2
⊢ (𝜑 → (𝑀 < 𝐾 ∨ 𝑀 = 𝐾)) |
180 | 166, 174,
179 | mpjaodan 788 |
1
⊢ (𝜑 → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |