ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmtpos GIF version

Theorem reldmtpos 6320
Description: Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reldmtpos (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)

Proof of Theorem reldmtpos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4161 . . . . 5 ∅ ∈ V
21eldm 4864 . . . 4 (∅ ∈ dom 𝐹 ↔ ∃𝑦𝐹𝑦)
3 vex 2766 . . . . . . 7 𝑦 ∈ V
4 brtpos0 6319 . . . . . . 7 (𝑦 ∈ V → (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦))
53, 4ax-mp 5 . . . . . 6 (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)
6 0nelxp 4692 . . . . . . . 8 ¬ ∅ ∈ (V × V)
7 df-rel 4671 . . . . . . . . 9 (Rel dom tpos 𝐹 ↔ dom tpos 𝐹 ⊆ (V × V))
8 ssel 3178 . . . . . . . . 9 (dom tpos 𝐹 ⊆ (V × V) → (∅ ∈ dom tpos 𝐹 → ∅ ∈ (V × V)))
97, 8sylbi 121 . . . . . . . 8 (Rel dom tpos 𝐹 → (∅ ∈ dom tpos 𝐹 → ∅ ∈ (V × V)))
106, 9mtoi 665 . . . . . . 7 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom tpos 𝐹)
111, 3breldm 4871 . . . . . . 7 (∅tpos 𝐹𝑦 → ∅ ∈ dom tpos 𝐹)
1210, 11nsyl3 627 . . . . . 6 (∅tpos 𝐹𝑦 → ¬ Rel dom tpos 𝐹)
135, 12sylbir 135 . . . . 5 (∅𝐹𝑦 → ¬ Rel dom tpos 𝐹)
1413exlimiv 1612 . . . 4 (∃𝑦𝐹𝑦 → ¬ Rel dom tpos 𝐹)
152, 14sylbi 121 . . 3 (∅ ∈ dom 𝐹 → ¬ Rel dom tpos 𝐹)
1615con2i 628 . 2 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom 𝐹)
17 vex 2766 . . . . . 6 𝑥 ∈ V
1817eldm 4864 . . . . 5 (𝑥 ∈ dom tpos 𝐹 ↔ ∃𝑦 𝑥tpos 𝐹𝑦)
19 relcnv 5048 . . . . . . . . . . 11 Rel dom 𝐹
20 df-rel 4671 . . . . . . . . . . 11 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
2119, 20mpbi 145 . . . . . . . . . 10 dom 𝐹 ⊆ (V × V)
2221sseli 3180 . . . . . . . . 9 (𝑥dom 𝐹𝑥 ∈ (V × V))
2322a1i 9 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ (V × V)))
24 elsni 3641 . . . . . . . . . . . 12 (𝑥 ∈ {∅} → 𝑥 = ∅)
2524breq1d 4044 . . . . . . . . . . 11 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦))
261, 3breldm 4871 . . . . . . . . . . . . 13 (∅𝐹𝑦 → ∅ ∈ dom 𝐹)
2726pm2.24d 623 . . . . . . . . . . . 12 (∅𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
285, 27sylbi 121 . . . . . . . . . . 11 (∅tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
2925, 28biimtrdi 163 . . . . . . . . . 10 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V))))
3029com3l 81 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V))))
3130impcom 125 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V)))
32 brtpos2 6318 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦)))
333, 32ax-mp 5 . . . . . . . . . . 11 (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦))
3433simplbi 274 . . . . . . . . . 10 (𝑥tpos 𝐹𝑦𝑥 ∈ (dom 𝐹 ∪ {∅}))
35 elun 3305 . . . . . . . . . 10 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↔ (𝑥dom 𝐹𝑥 ∈ {∅}))
3634, 35sylib 122 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (𝑥dom 𝐹𝑥 ∈ {∅}))
3736adantl 277 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ {∅}))
3823, 31, 37mpjaod 719 . . . . . . 7 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → 𝑥 ∈ (V × V))
3938ex 115 . . . . . 6 (¬ ∅ ∈ dom 𝐹 → (𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
4039exlimdv 1833 . . . . 5 (¬ ∅ ∈ dom 𝐹 → (∃𝑦 𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
4118, 40biimtrid 152 . . . 4 (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ dom tpos 𝐹𝑥 ∈ (V × V)))
4241ssrdv 3190 . . 3 (¬ ∅ ∈ dom 𝐹 → dom tpos 𝐹 ⊆ (V × V))
4342, 7sylibr 134 . 2 (¬ ∅ ∈ dom 𝐹 → Rel dom tpos 𝐹)
4416, 43impbii 126 1 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  wex 1506  wcel 2167  Vcvv 2763  cun 3155  wss 3157  c0 3451  {csn 3623   cuni 3840   class class class wbr 4034   × cxp 4662  ccnv 4663  dom cdm 4664  Rel wrel 4669  tpos ctpos 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-tpos 6312
This theorem is referenced by:  dmtpos  6323
  Copyright terms: Public domain W3C validator