| Step | Hyp | Ref
| Expression |
| 1 | | sucprc 4447 |
. 2
⊢ (¬
𝐴 ∈ V → suc 𝐴 = 𝐴) |
| 2 | | elirr 4577 |
. . . 4
⊢ ¬
𝐴 ∈ 𝐴 |
| 3 | | nfv 1542 |
. . . . 5
⊢
Ⅎ𝑥 𝐴 ∈ 𝐴 |
| 4 | | eleq1 2259 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) |
| 5 | 3, 4 | ceqsalg 2791 |
. . . 4
⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐴) ↔ 𝐴 ∈ 𝐴)) |
| 6 | 2, 5 | mtbiri 676 |
. . 3
⊢ (𝐴 ∈ V → ¬
∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐴)) |
| 7 | | velsn 3639 |
. . . . 5
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| 8 | | olc 712 |
. . . . . 6
⊢ (𝑥 ∈ {𝐴} → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴})) |
| 9 | | elun 3304 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴})) |
| 10 | | ssid 3203 |
. . . . . . . . 9
⊢ 𝐴 ⊆ 𝐴 |
| 11 | | df-suc 4406 |
. . . . . . . . . . 11
⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
| 12 | 11 | eqeq1i 2204 |
. . . . . . . . . 10
⊢ (suc
𝐴 = 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴) |
| 13 | | sseq1 3206 |
. . . . . . . . . 10
⊢ ((𝐴 ∪ {𝐴}) = 𝐴 → ((𝐴 ∪ {𝐴}) ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 14 | 12, 13 | sylbi 121 |
. . . . . . . . 9
⊢ (suc
𝐴 = 𝐴 → ((𝐴 ∪ {𝐴}) ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 15 | 10, 14 | mpbiri 168 |
. . . . . . . 8
⊢ (suc
𝐴 = 𝐴 → (𝐴 ∪ {𝐴}) ⊆ 𝐴) |
| 16 | 15 | sseld 3182 |
. . . . . . 7
⊢ (suc
𝐴 = 𝐴 → (𝑥 ∈ (𝐴 ∪ {𝐴}) → 𝑥 ∈ 𝐴)) |
| 17 | 9, 16 | biimtrrid 153 |
. . . . . 6
⊢ (suc
𝐴 = 𝐴 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) |
| 18 | 8, 17 | syl5 32 |
. . . . 5
⊢ (suc
𝐴 = 𝐴 → (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐴)) |
| 19 | 7, 18 | biimtrrid 153 |
. . . 4
⊢ (suc
𝐴 = 𝐴 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐴)) |
| 20 | 19 | alrimiv 1888 |
. . 3
⊢ (suc
𝐴 = 𝐴 → ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐴)) |
| 21 | 6, 20 | nsyl3 627 |
. 2
⊢ (suc
𝐴 = 𝐴 → ¬ 𝐴 ∈ V) |
| 22 | 1, 21 | impbii 126 |
1
⊢ (¬
𝐴 ∈ V ↔ suc 𝐴 = 𝐴) |