ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucprcreg GIF version

Theorem sucprcreg 4566
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.)
Assertion
Ref Expression
sucprcreg 𝐴 ∈ V ↔ suc 𝐴 = 𝐴)

Proof of Theorem sucprcreg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sucprc 4430 . 2 𝐴 ∈ V → suc 𝐴 = 𝐴)
2 elirr 4558 . . . 4 ¬ 𝐴𝐴
3 nfv 1539 . . . . 5 𝑥 𝐴𝐴
4 eleq1 2252 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
53, 4ceqsalg 2780 . . . 4 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴𝑥𝐴) ↔ 𝐴𝐴))
62, 5mtbiri 676 . . 3 (𝐴 ∈ V → ¬ ∀𝑥(𝑥 = 𝐴𝑥𝐴))
7 velsn 3624 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
8 olc 712 . . . . . 6 (𝑥 ∈ {𝐴} → (𝑥𝐴𝑥 ∈ {𝐴}))
9 elun 3291 . . . . . . 7 (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
10 ssid 3190 . . . . . . . . 9 𝐴𝐴
11 df-suc 4389 . . . . . . . . . . 11 suc 𝐴 = (𝐴 ∪ {𝐴})
1211eqeq1i 2197 . . . . . . . . . 10 (suc 𝐴 = 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴)
13 sseq1 3193 . . . . . . . . . 10 ((𝐴 ∪ {𝐴}) = 𝐴 → ((𝐴 ∪ {𝐴}) ⊆ 𝐴𝐴𝐴))
1412, 13sylbi 121 . . . . . . . . 9 (suc 𝐴 = 𝐴 → ((𝐴 ∪ {𝐴}) ⊆ 𝐴𝐴𝐴))
1510, 14mpbiri 168 . . . . . . . 8 (suc 𝐴 = 𝐴 → (𝐴 ∪ {𝐴}) ⊆ 𝐴)
1615sseld 3169 . . . . . . 7 (suc 𝐴 = 𝐴 → (𝑥 ∈ (𝐴 ∪ {𝐴}) → 𝑥𝐴))
179, 16biimtrrid 153 . . . . . 6 (suc 𝐴 = 𝐴 → ((𝑥𝐴𝑥 ∈ {𝐴}) → 𝑥𝐴))
188, 17syl5 32 . . . . 5 (suc 𝐴 = 𝐴 → (𝑥 ∈ {𝐴} → 𝑥𝐴))
197, 18biimtrrid 153 . . . 4 (suc 𝐴 = 𝐴 → (𝑥 = 𝐴𝑥𝐴))
2019alrimiv 1885 . . 3 (suc 𝐴 = 𝐴 → ∀𝑥(𝑥 = 𝐴𝑥𝐴))
216, 20nsyl3 627 . 2 (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ V)
221, 21impbii 126 1 𝐴 ∈ V ↔ suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 709  wal 1362   = wceq 1364  wcel 2160  Vcvv 2752  cun 3142  wss 3144  {csn 3607  suc csuc 4383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-sn 3613  df-suc 4389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator