ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucprcreg GIF version

Theorem sucprcreg 4585
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.)
Assertion
Ref Expression
sucprcreg 𝐴 ∈ V ↔ suc 𝐴 = 𝐴)

Proof of Theorem sucprcreg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sucprc 4447 . 2 𝐴 ∈ V → suc 𝐴 = 𝐴)
2 elirr 4577 . . . 4 ¬ 𝐴𝐴
3 nfv 1542 . . . . 5 𝑥 𝐴𝐴
4 eleq1 2259 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
53, 4ceqsalg 2791 . . . 4 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴𝑥𝐴) ↔ 𝐴𝐴))
62, 5mtbiri 676 . . 3 (𝐴 ∈ V → ¬ ∀𝑥(𝑥 = 𝐴𝑥𝐴))
7 velsn 3639 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
8 olc 712 . . . . . 6 (𝑥 ∈ {𝐴} → (𝑥𝐴𝑥 ∈ {𝐴}))
9 elun 3304 . . . . . . 7 (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
10 ssid 3203 . . . . . . . . 9 𝐴𝐴
11 df-suc 4406 . . . . . . . . . . 11 suc 𝐴 = (𝐴 ∪ {𝐴})
1211eqeq1i 2204 . . . . . . . . . 10 (suc 𝐴 = 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴)
13 sseq1 3206 . . . . . . . . . 10 ((𝐴 ∪ {𝐴}) = 𝐴 → ((𝐴 ∪ {𝐴}) ⊆ 𝐴𝐴𝐴))
1412, 13sylbi 121 . . . . . . . . 9 (suc 𝐴 = 𝐴 → ((𝐴 ∪ {𝐴}) ⊆ 𝐴𝐴𝐴))
1510, 14mpbiri 168 . . . . . . . 8 (suc 𝐴 = 𝐴 → (𝐴 ∪ {𝐴}) ⊆ 𝐴)
1615sseld 3182 . . . . . . 7 (suc 𝐴 = 𝐴 → (𝑥 ∈ (𝐴 ∪ {𝐴}) → 𝑥𝐴))
179, 16biimtrrid 153 . . . . . 6 (suc 𝐴 = 𝐴 → ((𝑥𝐴𝑥 ∈ {𝐴}) → 𝑥𝐴))
188, 17syl5 32 . . . . 5 (suc 𝐴 = 𝐴 → (𝑥 ∈ {𝐴} → 𝑥𝐴))
197, 18biimtrrid 153 . . . 4 (suc 𝐴 = 𝐴 → (𝑥 = 𝐴𝑥𝐴))
2019alrimiv 1888 . . 3 (suc 𝐴 = 𝐴 → ∀𝑥(𝑥 = 𝐴𝑥𝐴))
216, 20nsyl3 627 . 2 (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ V)
221, 21impbii 126 1 𝐴 ∈ V ↔ suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 709  wal 1362   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  wss 3157  {csn 3622  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-suc 4406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator