ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmpt2 GIF version

Theorem pcmpt2 12376
Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmpt.4 (𝜑𝑃 ∈ ℙ)
pcmpt.5 (𝑛 = 𝑃𝐴 = 𝐵)
pcmpt2.6 (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
pcmpt2 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
Distinct variable groups:   𝐵,𝑛   𝑃,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐹(𝑛)   𝑀(𝑛)   𝑁(𝑛)

Proof of Theorem pcmpt2
StepHypRef Expression
1 pcmpt.4 . . 3 (𝜑𝑃 ∈ ℙ)
2 pcmpt.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
3 pcmpt.2 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
42, 3pcmptcl 12374 . . . . . 6 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
54simprd 114 . . . . 5 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
6 pcmpt.3 . . . . . 6 (𝜑𝑁 ∈ ℕ)
7 pcmpt2.6 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑁))
8 eluznn 9630 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
96, 7, 8syl2anc 411 . . . . 5 (𝜑𝑀 ∈ ℕ)
105, 9ffvelcdmd 5673 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
1110nnzd 9404 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
1210nnne0d 8994 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≠ 0)
135, 6ffvelcdmd 5673 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
14 pcdiv 12334 . . 3 ((𝑃 ∈ ℙ ∧ ((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑀) ≠ 0) ∧ (seq1( · , 𝐹)‘𝑁) ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))))
151, 11, 12, 13, 14syl121anc 1254 . 2 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))))
16 pcmpt.5 . . . 4 (𝑛 = 𝑃𝐴 = 𝐵)
172, 3, 9, 1, 16pcmpt 12375 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) = if(𝑃𝑀, 𝐵, 0))
182, 3, 6, 1, 16pcmpt 12375 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
1917, 18oveq12d 5914 . 2 (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))) = (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)))
2016eleq1d 2258 . . . . . . . 8 (𝑛 = 𝑃 → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
2120, 3, 1rspcdva 2861 . . . . . . 7 (𝜑𝐵 ∈ ℕ0)
2221nn0cnd 9261 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2322subidd 8286 . . . . 5 (𝜑 → (𝐵𝐵) = 0)
2423adantr 276 . . . 4 ((𝜑𝑃𝑁) → (𝐵𝐵) = 0)
25 prmnn 12142 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
261, 25syl 14 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
2726nnred 8962 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
2827adantr 276 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑃 ∈ ℝ)
296nnred 8962 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3029adantr 276 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑁 ∈ ℝ)
319nnred 8962 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
3231adantr 276 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑀 ∈ ℝ)
33 simpr 110 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑃𝑁)
34 eluzle 9570 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
357, 34syl 14 . . . . . . . 8 (𝜑𝑁𝑀)
3635adantr 276 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑁𝑀)
3728, 30, 32, 33, 36letrd 8111 . . . . . 6 ((𝜑𝑃𝑁) → 𝑃𝑀)
3837iftrued 3556 . . . . 5 ((𝜑𝑃𝑁) → if(𝑃𝑀, 𝐵, 0) = 𝐵)
39 iftrue 3554 . . . . . 6 (𝑃𝑁 → if(𝑃𝑁, 𝐵, 0) = 𝐵)
4039adantl 277 . . . . 5 ((𝜑𝑃𝑁) → if(𝑃𝑁, 𝐵, 0) = 𝐵)
4138, 40oveq12d 5914 . . . 4 ((𝜑𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = (𝐵𝐵))
42 simpr 110 . . . . . 6 ((𝑃𝑀 ∧ ¬ 𝑃𝑁) → ¬ 𝑃𝑁)
4342, 33nsyl3 627 . . . . 5 ((𝜑𝑃𝑁) → ¬ (𝑃𝑀 ∧ ¬ 𝑃𝑁))
4443iffalsed 3559 . . . 4 ((𝜑𝑃𝑁) → if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0) = 0)
4524, 41, 443eqtr4d 2232 . . 3 ((𝜑𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
46 iffalse 3557 . . . . . 6 𝑃𝑁 → if(𝑃𝑁, 𝐵, 0) = 0)
4746oveq2d 5912 . . . . 5 𝑃𝑁 → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = (if(𝑃𝑀, 𝐵, 0) − 0))
48 0cnd 7980 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
4926nnzd 9404 . . . . . . . 8 (𝜑𝑃 ∈ ℤ)
509nnzd 9404 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
51 zdcle 9359 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑃𝑀)
5249, 50, 51syl2anc 411 . . . . . . 7 (𝜑DECID 𝑃𝑀)
5322, 48, 52ifcldcd 3585 . . . . . 6 (𝜑 → if(𝑃𝑀, 𝐵, 0) ∈ ℂ)
5453subid1d 8287 . . . . 5 (𝜑 → (if(𝑃𝑀, 𝐵, 0) − 0) = if(𝑃𝑀, 𝐵, 0))
5547, 54sylan9eqr 2244 . . . 4 ((𝜑 ∧ ¬ 𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if(𝑃𝑀, 𝐵, 0))
56 simpr 110 . . . . . 6 ((𝜑 ∧ ¬ 𝑃𝑁) → ¬ 𝑃𝑁)
5756biantrud 304 . . . . 5 ((𝜑 ∧ ¬ 𝑃𝑁) → (𝑃𝑀 ↔ (𝑃𝑀 ∧ ¬ 𝑃𝑁)))
5857ifbid 3570 . . . 4 ((𝜑 ∧ ¬ 𝑃𝑁) → if(𝑃𝑀, 𝐵, 0) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
5955, 58eqtrd 2222 . . 3 ((𝜑 ∧ ¬ 𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
606nnzd 9404 . . . . 5 (𝜑𝑁 ∈ ℤ)
61 zdcle 9359 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑃𝑁)
6249, 60, 61syl2anc 411 . . . 4 (𝜑DECID 𝑃𝑁)
63 exmiddc 837 . . . 4 (DECID 𝑃𝑁 → (𝑃𝑁 ∨ ¬ 𝑃𝑁))
6462, 63syl 14 . . 3 (𝜑 → (𝑃𝑁 ∨ ¬ 𝑃𝑁))
6545, 59, 64mpjaodan 799 . 2 (𝜑 → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
6615, 19, 653eqtrd 2226 1 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2160  wne 2360  wral 2468  ifcif 3549   class class class wbr 4018  cmpt 4079  wf 5231  cfv 5235  (class class class)co 5896  cc 7839  cr 7840  0cc0 7841  1c1 7842   · cmul 7846  cle 8023  cmin 8158   / cdiv 8659  cn 8949  0cn0 9206  cz 9283  cuz 9558  seqcseq 10476  cexp 10550  cprime 12139   pCnt cpc 12316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-1o 6441  df-2o 6442  df-er 6559  df-en 6767  df-fin 6769  df-sup 7013  df-inf 7014  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-fl 10301  df-mod 10354  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-dvds 11827  df-gcd 11976  df-prm 12140  df-pc 12317
This theorem is referenced by:  pcmptdvds  12377
  Copyright terms: Public domain W3C validator