ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmpt2 GIF version

Theorem pcmpt2 12251
Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmpt.4 (𝜑𝑃 ∈ ℙ)
pcmpt.5 (𝑛 = 𝑃𝐴 = 𝐵)
pcmpt2.6 (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
pcmpt2 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
Distinct variable groups:   𝐵,𝑛   𝑃,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐹(𝑛)   𝑀(𝑛)   𝑁(𝑛)

Proof of Theorem pcmpt2
StepHypRef Expression
1 pcmpt.4 . . 3 (𝜑𝑃 ∈ ℙ)
2 pcmpt.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
3 pcmpt.2 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
42, 3pcmptcl 12249 . . . . . 6 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
54simprd 113 . . . . 5 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
6 pcmpt.3 . . . . . 6 (𝜑𝑁 ∈ ℕ)
7 pcmpt2.6 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑁))
8 eluznn 9529 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
96, 7, 8syl2anc 409 . . . . 5 (𝜑𝑀 ∈ ℕ)
105, 9ffvelrnd 5615 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
1110nnzd 9303 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
1210nnne0d 8893 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≠ 0)
135, 6ffvelrnd 5615 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
14 pcdiv 12211 . . 3 ((𝑃 ∈ ℙ ∧ ((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑀) ≠ 0) ∧ (seq1( · , 𝐹)‘𝑁) ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))))
151, 11, 12, 13, 14syl121anc 1232 . 2 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))))
16 pcmpt.5 . . . 4 (𝑛 = 𝑃𝐴 = 𝐵)
172, 3, 9, 1, 16pcmpt 12250 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) = if(𝑃𝑀, 𝐵, 0))
182, 3, 6, 1, 16pcmpt 12250 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
1917, 18oveq12d 5854 . 2 (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))) = (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)))
2016eleq1d 2233 . . . . . . . 8 (𝑛 = 𝑃 → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
2120, 3, 1rspcdva 2830 . . . . . . 7 (𝜑𝐵 ∈ ℕ0)
2221nn0cnd 9160 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2322subidd 8188 . . . . 5 (𝜑 → (𝐵𝐵) = 0)
2423adantr 274 . . . 4 ((𝜑𝑃𝑁) → (𝐵𝐵) = 0)
25 prmnn 12021 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
261, 25syl 14 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
2726nnred 8861 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
2827adantr 274 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑃 ∈ ℝ)
296nnred 8861 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3029adantr 274 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑁 ∈ ℝ)
319nnred 8861 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
3231adantr 274 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑀 ∈ ℝ)
33 simpr 109 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑃𝑁)
34 eluzle 9469 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
357, 34syl 14 . . . . . . . 8 (𝜑𝑁𝑀)
3635adantr 274 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑁𝑀)
3728, 30, 32, 33, 36letrd 8013 . . . . . 6 ((𝜑𝑃𝑁) → 𝑃𝑀)
3837iftrued 3522 . . . . 5 ((𝜑𝑃𝑁) → if(𝑃𝑀, 𝐵, 0) = 𝐵)
39 iftrue 3520 . . . . . 6 (𝑃𝑁 → if(𝑃𝑁, 𝐵, 0) = 𝐵)
4039adantl 275 . . . . 5 ((𝜑𝑃𝑁) → if(𝑃𝑁, 𝐵, 0) = 𝐵)
4138, 40oveq12d 5854 . . . 4 ((𝜑𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = (𝐵𝐵))
42 simpr 109 . . . . . 6 ((𝑃𝑀 ∧ ¬ 𝑃𝑁) → ¬ 𝑃𝑁)
4342, 33nsyl3 616 . . . . 5 ((𝜑𝑃𝑁) → ¬ (𝑃𝑀 ∧ ¬ 𝑃𝑁))
4443iffalsed 3525 . . . 4 ((𝜑𝑃𝑁) → if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0) = 0)
4524, 41, 443eqtr4d 2207 . . 3 ((𝜑𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
46 iffalse 3523 . . . . . 6 𝑃𝑁 → if(𝑃𝑁, 𝐵, 0) = 0)
4746oveq2d 5852 . . . . 5 𝑃𝑁 → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = (if(𝑃𝑀, 𝐵, 0) − 0))
48 0cnd 7883 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
4926nnzd 9303 . . . . . . . 8 (𝜑𝑃 ∈ ℤ)
509nnzd 9303 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
51 zdcle 9258 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑃𝑀)
5249, 50, 51syl2anc 409 . . . . . . 7 (𝜑DECID 𝑃𝑀)
5322, 48, 52ifcldcd 3550 . . . . . 6 (𝜑 → if(𝑃𝑀, 𝐵, 0) ∈ ℂ)
5453subid1d 8189 . . . . 5 (𝜑 → (if(𝑃𝑀, 𝐵, 0) − 0) = if(𝑃𝑀, 𝐵, 0))
5547, 54sylan9eqr 2219 . . . 4 ((𝜑 ∧ ¬ 𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if(𝑃𝑀, 𝐵, 0))
56 simpr 109 . . . . . 6 ((𝜑 ∧ ¬ 𝑃𝑁) → ¬ 𝑃𝑁)
5756biantrud 302 . . . . 5 ((𝜑 ∧ ¬ 𝑃𝑁) → (𝑃𝑀 ↔ (𝑃𝑀 ∧ ¬ 𝑃𝑁)))
5857ifbid 3536 . . . 4 ((𝜑 ∧ ¬ 𝑃𝑁) → if(𝑃𝑀, 𝐵, 0) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
5955, 58eqtrd 2197 . . 3 ((𝜑 ∧ ¬ 𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
606nnzd 9303 . . . . 5 (𝜑𝑁 ∈ ℤ)
61 zdcle 9258 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑃𝑁)
6249, 60, 61syl2anc 409 . . . 4 (𝜑DECID 𝑃𝑁)
63 exmiddc 826 . . . 4 (DECID 𝑃𝑁 → (𝑃𝑁 ∨ ¬ 𝑃𝑁))
6462, 63syl 14 . . 3 (𝜑 → (𝑃𝑁 ∨ ¬ 𝑃𝑁))
6545, 59, 64mpjaodan 788 . 2 (𝜑 → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
6615, 19, 653eqtrd 2201 1 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824   = wceq 1342  wcel 2135  wne 2334  wral 2442  ifcif 3515   class class class wbr 3976  cmpt 4037  wf 5178  cfv 5182  (class class class)co 5836  cc 7742  cr 7743  0cc0 7744  1c1 7745   · cmul 7749  cle 7925  cmin 8060   / cdiv 8559  cn 8848  0cn0 9105  cz 9182  cuz 9457  seqcseq 10370  cexp 10444  cprime 12018   pCnt cpc 12193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-1o 6375  df-2o 6376  df-er 6492  df-en 6698  df-fin 6700  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fzo 10068  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-dvds 11714  df-gcd 11861  df-prm 12019  df-pc 12194
This theorem is referenced by:  pcmptdvds  12252
  Copyright terms: Public domain W3C validator