![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > undi | GIF version |
Description: Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
undi | ⊢ (𝐴 ∪ (𝐵 ∩ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3320 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
2 | 1 | orbi2i 762 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | ordi 816 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶))) | |
4 | elin 3320 | . . . 4 ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑥 ∈ (𝐴 ∪ 𝐶))) | |
5 | elun 3278 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
6 | elun 3278 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑥 ∈ (𝐴 ∪ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶))) |
8 | 4, 7 | bitr2i 185 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶))) |
9 | 2, 3, 8 | 3bitri 206 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶))) |
10 | 9 | uneqri 3279 | 1 ⊢ (𝐴 ∪ (𝐵 ∩ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ∪ cun 3129 ∩ cin 3130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 |
This theorem is referenced by: undir 3387 undifdc 6925 |
Copyright terms: Public domain | W3C validator |