| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > undi | GIF version | ||
| Description: Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| undi | ⊢ (𝐴 ∪ (𝐵 ∩ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3360 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 2 | 1 | orbi2i 764 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 3 | ordi 818 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶))) | |
| 4 | elin 3360 | . . . 4 ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑥 ∈ (𝐴 ∪ 𝐶))) | |
| 5 | elun 3318 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 6 | elun 3318 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑥 ∈ (𝐴 ∪ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶))) |
| 8 | 4, 7 | bitr2i 185 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶))) |
| 9 | 2, 3, 8 | 3bitri 206 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶))) |
| 10 | 9 | uneqri 3319 | 1 ⊢ (𝐴 ∪ (𝐵 ∩ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∪ cun 3168 ∩ cin 3169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 |
| This theorem is referenced by: undir 3427 undifdc 7036 |
| Copyright terms: Public domain | W3C validator |