ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undi GIF version

Theorem undi 3375
Description: Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
undi (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem undi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3310 . . . 4 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
21orbi2i 757 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)))
3 ordi 811 . . 3 ((𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
4 elin 3310 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∩ (𝐴𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ 𝑥 ∈ (𝐴𝐶)))
5 elun 3268 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
6 elun 3268 . . . . 5 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
75, 6anbi12i 457 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥 ∈ (𝐴𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
84, 7bitr2i 184 . . 3 (((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∩ (𝐴𝐶)))
92, 3, 83bitri 205 . 2 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∩ (𝐴𝐶)))
109uneqri 3269 1 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wa 103  wo 703   = wceq 1348  wcel 2141  cun 3119  cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127
This theorem is referenced by:  undir  3377  undifdc  6901
  Copyright terms: Public domain W3C validator