![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > undi | GIF version |
Description: Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
undi | ⊢ (𝐴 ∪ (𝐵 ∩ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3333 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
2 | 1 | orbi2i 763 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | ordi 817 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶))) | |
4 | elin 3333 | . . . 4 ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑥 ∈ (𝐴 ∪ 𝐶))) | |
5 | elun 3291 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
6 | elun 3291 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑥 ∈ (𝐴 ∪ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶))) |
8 | 4, 7 | bitr2i 185 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶))) |
9 | 2, 3, 8 | 3bitri 206 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶))) |
10 | 9 | uneqri 3292 | 1 ⊢ (𝐴 ∪ (𝐵 ∩ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2160 ∪ cun 3142 ∩ cin 3143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 |
This theorem is referenced by: undir 3400 undifdc 6952 |
Copyright terms: Public domain | W3C validator |