ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn1uz2 GIF version

Theorem elnn1uz2 9698
Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
elnn1uz2 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))

Proof of Theorem elnn1uz2
StepHypRef Expression
1 olc 712 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ ℕ))
2 nnz 9362 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3 1z 9369 . . . . . . . 8 1 ∈ ℤ
4 zdceq 9418 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
53, 4mpan2 425 . . . . . . 7 (𝑁 ∈ ℤ → DECID 𝑁 = 1)
6 df-dc 836 . . . . . . 7 (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1))
75, 6sylib 122 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 = 1 ∨ ¬ 𝑁 = 1))
8 df-ne 2368 . . . . . . 7 (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1)
98orbi2i 763 . . . . . 6 ((𝑁 = 1 ∨ 𝑁 ≠ 1) ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1))
107, 9sylibr 134 . . . . 5 (𝑁 ∈ ℤ → (𝑁 = 1 ∨ 𝑁 ≠ 1))
112, 10syl 14 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ≠ 1))
12 ordi 817 . . . 4 ((𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) ↔ ((𝑁 = 1 ∨ 𝑁 ∈ ℕ) ∧ (𝑁 = 1 ∨ 𝑁 ≠ 1)))
131, 11, 12sylanbrc 417 . . 3 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)))
14 eluz2b3 9695 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
1514orbi2i 763 . . 3 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) ↔ (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)))
1613, 15sylibr 134 . 2 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
17 1nn 9018 . . . 4 1 ∈ ℕ
18 eleq1 2259 . . . 4 (𝑁 = 1 → (𝑁 ∈ ℕ ↔ 1 ∈ ℕ))
1917, 18mpbiri 168 . . 3 (𝑁 = 1 → 𝑁 ∈ ℕ)
20 eluz2nn 9657 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2119, 20jaoi 717 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
2216, 21impbii 126 1 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  cfv 5259  1c1 7897  cn 9007  2c2 9058  cz 9343  cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619
This theorem is referenced by:  indstr2  9700  fldiv4lem1div2  10414  prmdc  12323  dfphi2  12413  pc2dvds  12524  oddprmdvds  12548  4sqlem18  12602
  Copyright terms: Public domain W3C validator