Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnn1uz2 | GIF version |
Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
elnn1uz2 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 701 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ ℕ)) | |
2 | nnz 9180 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 1z 9187 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
4 | zdceq 9233 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1) | |
5 | 3, 4 | mpan2 422 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → DECID 𝑁 = 1) |
6 | df-dc 821 | . . . . . . 7 ⊢ (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1)) | |
7 | 5, 6 | sylib 121 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 = 1 ∨ ¬ 𝑁 = 1)) |
8 | df-ne 2328 | . . . . . . 7 ⊢ (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1) | |
9 | 8 | orbi2i 752 | . . . . . 6 ⊢ ((𝑁 = 1 ∨ 𝑁 ≠ 1) ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1)) |
10 | 7, 9 | sylibr 133 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 = 1 ∨ 𝑁 ≠ 1)) |
11 | 2, 10 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ≠ 1)) |
12 | ordi 806 | . . . 4 ⊢ ((𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) ↔ ((𝑁 = 1 ∨ 𝑁 ∈ ℕ) ∧ (𝑁 = 1 ∨ 𝑁 ≠ 1))) | |
13 | 1, 11, 12 | sylanbrc 414 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))) |
14 | eluz2b3 9508 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | |
15 | 14 | orbi2i 752 | . . 3 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) ↔ (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))) |
16 | 13, 15 | sylibr 133 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
17 | 1nn 8838 | . . . 4 ⊢ 1 ∈ ℕ | |
18 | eleq1 2220 | . . . 4 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ ↔ 1 ∈ ℕ)) | |
19 | 17, 18 | mpbiri 167 | . . 3 ⊢ (𝑁 = 1 → 𝑁 ∈ ℕ) |
20 | eluz2nn 9471 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
21 | 19, 20 | jaoi 706 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℕ) |
22 | 16, 21 | impbii 125 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 820 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 ‘cfv 5169 1c1 7727 ℕcn 8827 2c2 8878 ℤcz 9161 ℤ≥cuz 9433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-inn 8828 df-2 8886 df-n0 9085 df-z 9162 df-uz 9434 |
This theorem is referenced by: indstr2 9513 dfphi2 12083 |
Copyright terms: Public domain | W3C validator |