![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnn1uz2 | GIF version |
Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
elnn1uz2 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 683 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ ℕ)) | |
2 | nnz 8971 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 1z 8978 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
4 | zdceq 9024 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1) | |
5 | 3, 4 | mpan2 419 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → DECID 𝑁 = 1) |
6 | df-dc 803 | . . . . . . 7 ⊢ (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1)) | |
7 | 5, 6 | sylib 121 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 = 1 ∨ ¬ 𝑁 = 1)) |
8 | df-ne 2281 | . . . . . . 7 ⊢ (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1) | |
9 | 8 | orbi2i 734 | . . . . . 6 ⊢ ((𝑁 = 1 ∨ 𝑁 ≠ 1) ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1)) |
10 | 7, 9 | sylibr 133 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 = 1 ∨ 𝑁 ≠ 1)) |
11 | 2, 10 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ≠ 1)) |
12 | ordi 788 | . . . 4 ⊢ ((𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) ↔ ((𝑁 = 1 ∨ 𝑁 ∈ ℕ) ∧ (𝑁 = 1 ∨ 𝑁 ≠ 1))) | |
13 | 1, 11, 12 | sylanbrc 411 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))) |
14 | eluz2b3 9294 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | |
15 | 14 | orbi2i 734 | . . 3 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) ↔ (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))) |
16 | 13, 15 | sylibr 133 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
17 | 1nn 8635 | . . . 4 ⊢ 1 ∈ ℕ | |
18 | eleq1 2175 | . . . 4 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ ↔ 1 ∈ ℕ)) | |
19 | 17, 18 | mpbiri 167 | . . 3 ⊢ (𝑁 = 1 → 𝑁 ∈ ℕ) |
20 | eluz2nn 9260 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
21 | 19, 20 | jaoi 688 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℕ) |
22 | 16, 21 | impbii 125 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∨ wo 680 DECID wdc 802 = wceq 1312 ∈ wcel 1461 ≠ wne 2280 ‘cfv 5079 1c1 7542 ℕcn 8624 2c2 8675 ℤcz 8952 ℤ≥cuz 9222 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-addcom 7639 ax-addass 7641 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-0id 7647 ax-rnegex 7648 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-ltadd 7655 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-inn 8625 df-2 8683 df-n0 8876 df-z 8953 df-uz 9223 |
This theorem is referenced by: indstr2 9299 dfphi2 11735 |
Copyright terms: Public domain | W3C validator |