![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnn1uz2 | GIF version |
Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
elnn1uz2 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 711 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ ℕ)) | |
2 | nnz 9274 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 1z 9281 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
4 | zdceq 9330 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1) | |
5 | 3, 4 | mpan2 425 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → DECID 𝑁 = 1) |
6 | df-dc 835 | . . . . . . 7 ⊢ (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1)) | |
7 | 5, 6 | sylib 122 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 = 1 ∨ ¬ 𝑁 = 1)) |
8 | df-ne 2348 | . . . . . . 7 ⊢ (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1) | |
9 | 8 | orbi2i 762 | . . . . . 6 ⊢ ((𝑁 = 1 ∨ 𝑁 ≠ 1) ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1)) |
10 | 7, 9 | sylibr 134 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 = 1 ∨ 𝑁 ≠ 1)) |
11 | 2, 10 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ≠ 1)) |
12 | ordi 816 | . . . 4 ⊢ ((𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) ↔ ((𝑁 = 1 ∨ 𝑁 ∈ ℕ) ∧ (𝑁 = 1 ∨ 𝑁 ≠ 1))) | |
13 | 1, 11, 12 | sylanbrc 417 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))) |
14 | eluz2b3 9606 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | |
15 | 14 | orbi2i 762 | . . 3 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) ↔ (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))) |
16 | 13, 15 | sylibr 134 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
17 | 1nn 8932 | . . . 4 ⊢ 1 ∈ ℕ | |
18 | eleq1 2240 | . . . 4 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ ↔ 1 ∈ ℕ)) | |
19 | 17, 18 | mpbiri 168 | . . 3 ⊢ (𝑁 = 1 → 𝑁 ∈ ℕ) |
20 | eluz2nn 9568 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
21 | 19, 20 | jaoi 716 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℕ) |
22 | 16, 21 | impbii 126 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 708 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 ‘cfv 5218 1c1 7814 ℕcn 8921 2c2 8972 ℤcz 9255 ℤ≥cuz 9530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-2 8980 df-n0 9179 df-z 9256 df-uz 9531 |
This theorem is referenced by: indstr2 9611 prmdc 12132 dfphi2 12222 pc2dvds 12331 oddprmdvds 12354 |
Copyright terms: Public domain | W3C validator |