ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn1uz2 GIF version

Theorem elnn1uz2 9063
Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
elnn1uz2 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))

Proof of Theorem elnn1uz2
StepHypRef Expression
1 olc 667 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ ℕ))
2 nnz 8739 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3 1z 8746 . . . . . . . 8 1 ∈ ℤ
4 zdceq 8792 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
53, 4mpan2 416 . . . . . . 7 (𝑁 ∈ ℤ → DECID 𝑁 = 1)
6 df-dc 781 . . . . . . 7 (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1))
75, 6sylib 120 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 = 1 ∨ ¬ 𝑁 = 1))
8 df-ne 2256 . . . . . . 7 (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1)
98orbi2i 714 . . . . . 6 ((𝑁 = 1 ∨ 𝑁 ≠ 1) ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1))
107, 9sylibr 132 . . . . 5 (𝑁 ∈ ℤ → (𝑁 = 1 ∨ 𝑁 ≠ 1))
112, 10syl 14 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ≠ 1))
12 ordi 765 . . . 4 ((𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) ↔ ((𝑁 = 1 ∨ 𝑁 ∈ ℕ) ∧ (𝑁 = 1 ∨ 𝑁 ≠ 1)))
131, 11, 12sylanbrc 408 . . 3 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)))
14 eluz2b3 9060 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
1514orbi2i 714 . . 3 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) ↔ (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)))
1613, 15sylibr 132 . 2 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
17 1nn 8405 . . . 4 1 ∈ ℕ
18 eleq1 2150 . . . 4 (𝑁 = 1 → (𝑁 ∈ ℕ ↔ 1 ∈ ℕ))
1917, 18mpbiri 166 . . 3 (𝑁 = 1 → 𝑁 ∈ ℕ)
20 eluz2nn 9026 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2119, 20jaoi 671 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
2216, 21impbii 124 1 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wb 103  wo 664  DECID wdc 780   = wceq 1289  wcel 1438  wne 2255  cfv 5002  1c1 7330  cn 8394  2c2 8444  cz 8720  cuz 8988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-2 8452  df-n0 8644  df-z 8721  df-uz 8989
This theorem is referenced by:  indstr2  9065  dfphi2  11289
  Copyright terms: Public domain W3C validator