| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn1uz2 | GIF version | ||
| Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| elnn1uz2 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 712 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ ℕ)) | |
| 2 | nnz 9390 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 3 | 1z 9397 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
| 4 | zdceq 9447 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1) | |
| 5 | 3, 4 | mpan2 425 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → DECID 𝑁 = 1) |
| 6 | df-dc 836 | . . . . . . 7 ⊢ (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1)) | |
| 7 | 5, 6 | sylib 122 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 = 1 ∨ ¬ 𝑁 = 1)) |
| 8 | df-ne 2376 | . . . . . . 7 ⊢ (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1) | |
| 9 | 8 | orbi2i 763 | . . . . . 6 ⊢ ((𝑁 = 1 ∨ 𝑁 ≠ 1) ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1)) |
| 10 | 7, 9 | sylibr 134 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 = 1 ∨ 𝑁 ≠ 1)) |
| 11 | 2, 10 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ≠ 1)) |
| 12 | ordi 817 | . . . 4 ⊢ ((𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) ↔ ((𝑁 = 1 ∨ 𝑁 ∈ ℕ) ∧ (𝑁 = 1 ∨ 𝑁 ≠ 1))) | |
| 13 | 1, 11, 12 | sylanbrc 417 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))) |
| 14 | eluz2b3 9724 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | |
| 15 | 14 | orbi2i 763 | . . 3 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) ↔ (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))) |
| 16 | 13, 15 | sylibr 134 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
| 17 | 1nn 9046 | . . . 4 ⊢ 1 ∈ ℕ | |
| 18 | eleq1 2267 | . . . 4 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ ↔ 1 ∈ ℕ)) | |
| 19 | 17, 18 | mpbiri 168 | . . 3 ⊢ (𝑁 = 1 → 𝑁 ∈ ℕ) |
| 20 | eluz2nn 9686 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 21 | 19, 20 | jaoi 717 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℕ) |
| 22 | 16, 21 | impbii 126 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 ‘cfv 5270 1c1 7925 ℕcn 9035 2c2 9086 ℤcz 9371 ℤ≥cuz 9647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-uz 9648 |
| This theorem is referenced by: indstr2 9729 fldiv4lem1div2 10448 prmdc 12423 dfphi2 12513 pc2dvds 12624 oddprmdvds 12648 4sqlem18 12702 |
| Copyright terms: Public domain | W3C validator |