ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn1uz2 GIF version

Theorem elnn1uz2 9583
Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
elnn1uz2 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))

Proof of Theorem elnn1uz2
StepHypRef Expression
1 olc 711 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ ℕ))
2 nnz 9248 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3 1z 9255 . . . . . . . 8 1 ∈ ℤ
4 zdceq 9304 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
53, 4mpan2 425 . . . . . . 7 (𝑁 ∈ ℤ → DECID 𝑁 = 1)
6 df-dc 835 . . . . . . 7 (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1))
75, 6sylib 122 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 = 1 ∨ ¬ 𝑁 = 1))
8 df-ne 2348 . . . . . . 7 (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1)
98orbi2i 762 . . . . . 6 ((𝑁 = 1 ∨ 𝑁 ≠ 1) ↔ (𝑁 = 1 ∨ ¬ 𝑁 = 1))
107, 9sylibr 134 . . . . 5 (𝑁 ∈ ℤ → (𝑁 = 1 ∨ 𝑁 ≠ 1))
112, 10syl 14 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ≠ 1))
12 ordi 816 . . . 4 ((𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) ↔ ((𝑁 = 1 ∨ 𝑁 ∈ ℕ) ∧ (𝑁 = 1 ∨ 𝑁 ≠ 1)))
131, 11, 12sylanbrc 417 . . 3 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)))
14 eluz2b3 9580 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
1514orbi2i 762 . . 3 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) ↔ (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)))
1613, 15sylibr 134 . 2 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
17 1nn 8906 . . . 4 1 ∈ ℕ
18 eleq1 2240 . . . 4 (𝑁 = 1 → (𝑁 ∈ ℕ ↔ 1 ∈ ℕ))
1917, 18mpbiri 168 . . 3 (𝑁 = 1 → 𝑁 ∈ ℕ)
20 eluz2nn 9542 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2119, 20jaoi 716 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
2216, 21impbii 126 1 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  cfv 5211  1c1 7790  cn 8895  2c2 8946  cz 9229  cuz 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-addcom 7889  ax-addass 7891  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-0id 7897  ax-rnegex 7898  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-ltadd 7905
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4289  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-inn 8896  df-2 8954  df-n0 9153  df-z 9230  df-uz 9505
This theorem is referenced by:  indstr2  9585  prmdc  12100  dfphi2  12190  pc2dvds  12299  oddprmdvds  12322
  Copyright terms: Public domain W3C validator