ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xlt2add GIF version

Theorem xlt2add 9692
Description: Extended real version of lt2add 8230. Note that ltleadd 8231, which has weaker assumptions, is not true for the extended reals (since 0 + +∞ < 1 + +∞ fails). (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xlt2add (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))

Proof of Theorem xlt2add
StepHypRef Expression
1 xaddcl 9672 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
213ad2ant1 1003 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
32adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
4 simp1l 1006 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 ∈ ℝ*)
5 simp2r 1009 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ∈ ℝ*)
6 xaddcl 9672 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
74, 5, 6syl2anc 409 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
87adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
9 xaddcl 9672 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
1093ad2ant2 1004 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
1110adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
12 simp3r 1011 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 < 𝐷)
1312adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 < 𝐷)
14 simp1r 1007 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 ∈ ℝ*)
1514adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ*)
165adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ*)
17 simprl 521 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
18 xltadd2 9689 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝐴 ∈ ℝ) → (𝐵 < 𝐷 ↔ (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷)))
1915, 16, 17, 18syl3anc 1217 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 < 𝐷 ↔ (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷)))
2013, 19mpbid 146 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷))
21 simp3l 1010 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 < 𝐶)
2221adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 < 𝐶)
234adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ*)
24 simp2l 1008 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ∈ ℝ*)
2524adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ*)
26 simprr 522 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
27 xltadd1 9688 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐷 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷)))
2823, 25, 26, 27syl3anc 1217 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 < 𝐶 ↔ (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷)))
2922, 28mpbid 146 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷))
303, 8, 11, 20, 29xrlttrd 9621 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
3130anassrs 398 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 ∈ ℝ) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
32 pnfxr 7841 . . . . . . . . . . . 12 +∞ ∈ ℝ*
3332a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → +∞ ∈ ℝ*)
34 pnfge 9604 . . . . . . . . . . . 12 (𝐶 ∈ ℝ*𝐶 ≤ +∞)
3524, 34syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ≤ +∞)
364, 24, 33, 21, 35xrltletrd 9623 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 < +∞)
37 npnflt 9627 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
384, 37syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
3936, 38mpbid 146 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 ≠ +∞)
40 pnfge 9604 . . . . . . . . . . . 12 (𝐷 ∈ ℝ*𝐷 ≤ +∞)
415, 40syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ≤ +∞)
4214, 5, 33, 12, 41xrltletrd 9623 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 < +∞)
43 npnflt 9627 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 < +∞ ↔ 𝐵 ≠ +∞))
4414, 43syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐵 < +∞ ↔ 𝐵 ≠ +∞))
4542, 44mpbid 146 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 ≠ +∞)
46 xaddnepnf 9670 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
474, 39, 14, 45, 46syl22anc 1218 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) ≠ +∞)
48 npnflt 9627 . . . . . . . . 9 ((𝐴 +𝑒 𝐵) ∈ ℝ* → ((𝐴 +𝑒 𝐵) < +∞ ↔ (𝐴 +𝑒 𝐵) ≠ +∞))
492, 48syl 14 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → ((𝐴 +𝑒 𝐵) < +∞ ↔ (𝐴 +𝑒 𝐵) ≠ +∞))
5047, 49mpbird 166 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) < +∞)
5150adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < +∞)
52 oveq2 5789 . . . . . . 7 (𝐷 = +∞ → (𝐶 +𝑒 𝐷) = (𝐶 +𝑒 +∞))
53 mnfxr 7845 . . . . . . . . . . 11 -∞ ∈ ℝ*
5453a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ∈ ℝ*)
55 mnfle 9607 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
564, 55syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ≤ 𝐴)
5754, 4, 24, 56, 21xrlelttrd 9622 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < 𝐶)
58 nmnfgt 9630 . . . . . . . . . 10 (𝐶 ∈ ℝ* → (-∞ < 𝐶𝐶 ≠ -∞))
5924, 58syl 14 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < 𝐶𝐶 ≠ -∞))
6057, 59mpbid 146 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ≠ -∞)
61 xaddpnf1 9658 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (𝐶 +𝑒 +∞) = +∞)
6224, 60, 61syl2anc 409 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 +∞) = +∞)
6352, 62sylan9eqr 2195 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐶 +𝑒 𝐷) = +∞)
6451, 63breqtrrd 3963 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
6564adantlr 469 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
66 simpr 109 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = -∞) → 𝐷 = -∞)
67 mnfle 9607 . . . . . . . . . 10 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
6814, 67syl 14 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ≤ 𝐵)
6954, 14, 5, 68, 12xrlelttrd 9622 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < 𝐷)
70 nmnfgt 9630 . . . . . . . . 9 (𝐷 ∈ ℝ* → (-∞ < 𝐷𝐷 ≠ -∞))
715, 70syl 14 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < 𝐷𝐷 ≠ -∞))
7269, 71mpbid 146 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ≠ -∞)
7372adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = -∞) → 𝐷 ≠ -∞)
7466, 73pm2.21ddne 2392 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
7574adantlr 469 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
76 elxr 9592 . . . . . 6 (𝐷 ∈ ℝ* ↔ (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
775, 76sylib 121 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
7877adantr 274 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) → (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
7931, 65, 75, 78mpjao3dan 1286 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
80 simpr 109 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8139adantr 274 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = +∞) → 𝐴 ≠ +∞)
8280, 81pm2.21ddne 2392 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
83 oveq1 5788 . . . . 5 (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
84 xaddmnf2 9661 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
8514, 45, 84syl2anc 409 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ +𝑒 𝐵) = -∞)
8683, 85sylan9eqr 2195 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
87 xaddnemnf 9669 . . . . . . 7 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞)
8824, 60, 5, 72, 87syl22anc 1218 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 𝐷) ≠ -∞)
89 nmnfgt 9630 . . . . . . 7 ((𝐶 +𝑒 𝐷) ∈ ℝ* → (-∞ < (𝐶 +𝑒 𝐷) ↔ (𝐶 +𝑒 𝐷) ≠ -∞))
9010, 89syl 14 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < (𝐶 +𝑒 𝐷) ↔ (𝐶 +𝑒 𝐷) ≠ -∞))
9188, 90mpbird 166 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < (𝐶 +𝑒 𝐷))
9291adantr 274 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → -∞ < (𝐶 +𝑒 𝐷))
9386, 92eqbrtrd 3957 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
94 elxr 9592 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
954, 94sylib 121 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
9679, 82, 93, 95mpjao3dan 1286 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
97963expia 1184 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3o 962  w3a 963   = wceq 1332  wcel 1481  wne 2309   class class class wbr 3936  (class class class)co 5781  cr 7642  +∞cpnf 7820  -∞cmnf 7821  *cxr 7822   < clt 7823  cle 7824   +𝑒 cxad 9586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-i2m1 7748  ax-0id 7751  ax-rnegex 7752  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-ltadd 7759
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-po 4225  df-iso 4226  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-xadd 9589
This theorem is referenced by:  bldisj  12607
  Copyright terms: Public domain W3C validator