ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemex GIF version

Theorem ennnfonelemex 12985
Description: Lemma for ennnfone 12996. Extending the sequence (𝐻𝑃) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemex.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemex (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑗,𝐹,𝑘,𝑛   𝑥,𝐹,𝑦   𝑗,𝐺   𝑗,𝐻,𝑘,𝑛   𝑖,𝐻,𝑘   𝑥,𝐻,𝑦,𝑘   𝑗,𝐽   𝑗,𝑁,𝑘,𝑛   𝑖,𝑁   𝑥,𝑁,𝑦   𝑃,𝑗,𝑘,𝑛   𝑥,𝑃,𝑦   𝑃,𝑖   𝜑,𝑗,𝑘,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑖)   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)

Proof of Theorem ennnfonelemex
Dummy variables 𝑎 𝑏 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4493 . . . . 5 (𝑛 = (𝑁𝑃) → suc 𝑛 = suc (𝑁𝑃))
21raleqdv 2734 . . . 4 (𝑛 = (𝑁𝑃) → (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗)))
32rexbidv 2531 . . 3 (𝑛 = (𝑁𝑃) → (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗)))
4 ennnfonelemh.ne . . 3 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
5 ennnfonelemh.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
65frechashgf1o 10650 . . . . . 6 𝑁:ω–1-1-onto→ℕ0
7 f1ocnv 5585 . . . . . 6 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
86, 7ax-mp 5 . . . . 5 𝑁:ℕ01-1-onto→ω
9 f1of 5572 . . . . 5 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
108, 9mp1i 10 . . . 4 (𝜑𝑁:ℕ0⟶ω)
11 ennnfonelemex.p . . . 4 (𝜑𝑃 ∈ ℕ0)
1210, 11ffvelcdmd 5771 . . 3 (𝜑 → (𝑁𝑃) ∈ ω)
133, 4, 12rspcdva 2912 . 2 (𝜑 → ∃𝑘 ∈ ω ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
14 f1of 5572 . . . . 5 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
156, 14mp1i 10 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑁:ω⟶ℕ0)
16 peano2 4687 . . . . 5 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
1716ad2antrl 490 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → suc 𝑘 ∈ ω)
1815, 17ffvelcdmd 5771 . . 3 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℕ0)
19 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
2019ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝐹:ω–onto𝐴)
21 fofun 5549 . . . . . . . 8 (𝐹:ω–onto𝐴 → Fun 𝐹)
2220, 21syl 14 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → Fun 𝐹)
23 vex 2802 . . . . . . . . . 10 𝑘 ∈ V
2423sucid 4508 . . . . . . . . 9 𝑘 ∈ suc 𝑘
25 simprl 529 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑘 ∈ ω)
2625adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝑘 ∈ ω)
27 fof 5548 . . . . . . . . . . . 12 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
28 fdm 5479 . . . . . . . . . . . 12 (𝐹:ω⟶𝐴 → dom 𝐹 = ω)
2920, 27, 283syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → dom 𝐹 = ω)
3026, 29eleqtrrd 2309 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝑘 ∈ dom 𝐹)
31 funfvima 5871 . . . . . . . . . 10 ((Fun 𝐹𝑘 ∈ dom 𝐹) → (𝑘 ∈ suc 𝑘 → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘)))
3222, 30, 31syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝑘 ∈ suc 𝑘 → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘)))
3324, 32mpi 15 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘))
34 simpr 110 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)))
35 ennnfonelemh.dceq . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3635adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3719adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝐹:ω–onto𝐴)
384adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
39 fveq2 5627 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
4039neeq2d 2419 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑎 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑎)))
4140cbvralv 2765 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
4241rexbii 2537 . . . . . . . . . . . . . . . . . . . 20 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
43 fveq2 5627 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑏 → (𝐹𝑘) = (𝐹𝑏))
4443neeq1d 2418 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑏 → ((𝐹𝑘) ≠ (𝐹𝑎) ↔ (𝐹𝑏) ≠ (𝐹𝑎)))
4544ralbidv 2530 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑏 → (∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎)))
4645cbvrexv 2766 . . . . . . . . . . . . . . . . . . . 20 (∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎) ↔ ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4742, 46bitri 184 . . . . . . . . . . . . . . . . . . 19 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4847ralbii 2536 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4938, 48sylib 122 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
50 ennnfonelemh.g . . . . . . . . . . . . . . . . 17 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
51 ennnfonelemh.j . . . . . . . . . . . . . . . . 17 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
52 ennnfonelemh.h . . . . . . . . . . . . . . . . 17 𝐻 = seq0(𝐺, 𝐽)
5336, 37, 49, 50, 5, 51, 52, 18ennnfonelemhf1o 12984 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))))
54 f1ofun 5574 . . . . . . . . . . . . . . . 16 ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5553, 54syl 14 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5655ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5711adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ∈ ℕ0)
586, 14mp1i 10 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ω) → 𝑁:ω⟶ℕ0)
5916adantl 277 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ω) → suc 𝑘 ∈ ω)
6058, 59ffvelcdmd 5771 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ω) → (𝑁‘suc 𝑘) ∈ ℕ0)
6160adantrr 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℕ0)
6257nn0red 9423 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ∈ ℝ)
6361nn0red 9423 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℝ)
64 f1ocnvfv2 5902 . . . . . . . . . . . . . . . . . . 19 ((𝑁:ω–1-1-onto→ℕ0𝑃 ∈ ℕ0) → (𝑁‘(𝑁𝑃)) = 𝑃)
656, 57, 64sylancr 414 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁𝑃)) = 𝑃)
6612adantr 276 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ ω)
67 simprr 531 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
6837, 25, 66, 67ennnfonelemk 12971 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ 𝑘)
69 elelsuc 4500 . . . . . . . . . . . . . . . . . . . 20 ((𝑁𝑃) ∈ 𝑘 → (𝑁𝑃) ∈ suc 𝑘)
7068, 69syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ suc 𝑘)
71 0zd 9458 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 0 ∈ ℤ)
7271, 5, 66, 17frec2uzltd 10625 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝑁𝑃) ∈ suc 𝑘 → (𝑁‘(𝑁𝑃)) < (𝑁‘suc 𝑘)))
7370, 72mpd 13 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁𝑃)) < (𝑁‘suc 𝑘))
7465, 73eqbrtrrd 4107 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 < (𝑁‘suc 𝑘))
7562, 63, 74ltled 8265 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ≤ (𝑁‘suc 𝑘))
7636, 37, 38, 50, 5, 51, 52, 57, 61, 75ennnfoneleminc 12982 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)))
7776ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)))
78 simpr 110 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → 𝑠 ∈ dom (𝐻𝑃))
79 funssfv 5653 . . . . . . . . . . . . . 14 ((Fun (𝐻‘(𝑁‘suc 𝑘)) ∧ (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻‘(𝑁‘suc 𝑘))‘𝑠) = ((𝐻𝑃)‘𝑠))
8056, 77, 78, 79syl3anc 1271 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻‘(𝑁‘suc 𝑘))‘𝑠) = ((𝐻𝑃)‘𝑠))
8180eqcomd 2235 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))
8281ralrimiva 2603 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))
8336, 37, 49, 50, 5, 51, 52, 57ennnfonelemhf1o 12984 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)))
84 f1ofun 5574 . . . . . . . . . . . . . 14 ((𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)) → Fun (𝐻𝑃))
8583, 84syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → Fun (𝐻𝑃))
86 eqfunfv 5737 . . . . . . . . . . . . 13 ((Fun (𝐻𝑃) ∧ Fun (𝐻‘(𝑁‘suc 𝑘))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8785, 55, 86syl2anc 411 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8887adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8934, 82, 88mpbir2and 950 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)))
9089rneqd 4953 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻𝑃) = ran (𝐻‘(𝑁‘suc 𝑘)))
91 dff1o5 5581 . . . . . . . . . . . 12 ((𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)) ↔ ((𝐻𝑃):dom (𝐻𝑃)–1-1→(𝐹 “ (𝑁𝑃)) ∧ ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃))))
9283, 91sylib 122 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻𝑃):dom (𝐻𝑃)–1-1→(𝐹 “ (𝑁𝑃)) ∧ ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃))))
9392simprd 114 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃)))
9493adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃)))
95 f1ocnvfv1 5901 . . . . . . . . . . . . . . . 16 ((𝑁:ω–1-1-onto→ℕ0 ∧ suc 𝑘 ∈ ω) → (𝑁‘(𝑁‘suc 𝑘)) = suc 𝑘)
966, 17, 95sylancr 414 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁‘suc 𝑘)) = suc 𝑘)
9796imaeq2d 5068 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) = (𝐹 “ suc 𝑘))
98 f1oeq3 5562 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) = (𝐹 “ suc 𝑘) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) ↔ (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘)))
9997, 98syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) ↔ (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘)))
10053, 99mpbid 147 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘))
101 dff1o5 5581 . . . . . . . . . . . 12 ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘) ↔ ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1→(𝐹 “ suc 𝑘) ∧ ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘)))
102100, 101sylib 122 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1→(𝐹 “ suc 𝑘) ∧ ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘)))
103102simprd 114 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘))
104103adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘))
10590, 94, 1043eqtr3d 2270 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹 “ (𝑁𝑃)) = (𝐹 “ suc 𝑘))
10633, 105eleqtrrd 2309 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹𝑘) ∈ (𝐹 “ (𝑁𝑃)))
107 fvelima 5685 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹𝑘) ∈ (𝐹 “ (𝑁𝑃))) → ∃𝑞 ∈ (𝑁𝑃)(𝐹𝑞) = (𝐹𝑘))
10822, 106, 107syl2anc 411 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ∃𝑞 ∈ (𝑁𝑃)(𝐹𝑞) = (𝐹𝑘))
109 simprr 531 . . . . . . 7 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑞) = (𝐹𝑘))
110 fveq2 5627 . . . . . . . . . 10 (𝑗 = 𝑞 → (𝐹𝑗) = (𝐹𝑞))
111110neeq2d 2419 . . . . . . . . 9 (𝑗 = 𝑞 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑞)))
11267ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
113 elelsuc 4500 . . . . . . . . . 10 (𝑞 ∈ (𝑁𝑃) → 𝑞 ∈ suc (𝑁𝑃))
114113ad2antrl 490 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → 𝑞 ∈ suc (𝑁𝑃))
115111, 112, 114rspcdva 2912 . . . . . . . 8 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑘) ≠ (𝐹𝑞))
116115necomd 2486 . . . . . . 7 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑞) ≠ (𝐹𝑘))
117109, 116pm2.21ddne 2483 . . . . . 6 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → ⊥)
118108, 117rexlimddv 2653 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ⊥)
119118inegd 1414 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ¬ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)))
120 dmss 4922 . . . . . 6 ((𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)) → dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)))
12176, 120syl 14 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)))
12235, 19, 4, 50, 5, 51, 52, 11ennnfonelemom 12979 . . . . . . 7 (𝜑 → dom (𝐻𝑃) ∈ ω)
123122adantr 276 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ∈ ω)
12442a1i 9 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎)))
125124ralbidv 2530 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎)))
12638, 125mpbid 147 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
12736, 37, 126, 50, 5, 51, 52, 61ennnfonelemom 12979 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω)
128 nntri1 6642 . . . . . 6 ((dom (𝐻𝑃) ∈ ω ∧ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω) → (dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)) ↔ ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
129123, 127, 128syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)) ↔ ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
130121, 129mpbid 147 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃))
131 nntri3or 6639 . . . . 5 ((dom (𝐻𝑃) ∈ ω ∧ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω) → (dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
132123, 127, 131syl2anc 411 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
133119, 130, 132ecase23d 1384 . . 3 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)))
134 fveq2 5627 . . . . . 6 (𝑖 = (𝑁‘suc 𝑘) → (𝐻𝑖) = (𝐻‘(𝑁‘suc 𝑘)))
135134dmeqd 4925 . . . . 5 (𝑖 = (𝑁‘suc 𝑘) → dom (𝐻𝑖) = dom (𝐻‘(𝑁‘suc 𝑘)))
136135eleq2d 2299 . . . 4 (𝑖 = (𝑁‘suc 𝑘) → (dom (𝐻𝑃) ∈ dom (𝐻𝑖) ↔ dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘))))
137136rspcev 2907 . . 3 (((𝑁‘suc 𝑘) ∈ ℕ0 ∧ dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘))) → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
13818, 133, 137syl2anc 411 . 2 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
13913, 138rexlimddv 2653 1 (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 839  w3o 1001   = wceq 1395  wfal 1400  wcel 2200  wne 2400  wral 2508  wrex 2509  cun 3195  wss 3197  c0 3491  ifcif 3602  {csn 3666  cop 3669   class class class wbr 4083  cmpt 4145  suc csuc 4456  ωcom 4682  ccnv 4718  dom cdm 4719  ran crn 4720  cima 4722  Fun wfun 5312  wf 5314  1-1wf1 5315  ontowfo 5316  1-1-ontowf1o 5317  cfv 5318  (class class class)co 6001  cmpo 6003  freccfrec 6536  pm cpm 6796  0cc0 7999  1c1 8000   + caddc 8002   < clt 8181  cmin 8317  0cn0 9369  cz 9446  seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pm 6798  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670
This theorem is referenced by:  ennnfonelemhom  12986
  Copyright terms: Public domain W3C validator