ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemex GIF version

Theorem ennnfonelemex 12818
Description: Lemma for ennnfone 12829. Extending the sequence (𝐻𝑃) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemex.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemex (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑗,𝐹,𝑘,𝑛   𝑥,𝐹,𝑦   𝑗,𝐺   𝑗,𝐻,𝑘,𝑛   𝑖,𝐻,𝑘   𝑥,𝐻,𝑦,𝑘   𝑗,𝐽   𝑗,𝑁,𝑘,𝑛   𝑖,𝑁   𝑥,𝑁,𝑦   𝑃,𝑗,𝑘,𝑛   𝑥,𝑃,𝑦   𝑃,𝑖   𝜑,𝑗,𝑘,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑖)   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)

Proof of Theorem ennnfonelemex
Dummy variables 𝑎 𝑏 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4450 . . . . 5 (𝑛 = (𝑁𝑃) → suc 𝑛 = suc (𝑁𝑃))
21raleqdv 2708 . . . 4 (𝑛 = (𝑁𝑃) → (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗)))
32rexbidv 2507 . . 3 (𝑛 = (𝑁𝑃) → (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗)))
4 ennnfonelemh.ne . . 3 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
5 ennnfonelemh.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
65frechashgf1o 10575 . . . . . 6 𝑁:ω–1-1-onto→ℕ0
7 f1ocnv 5537 . . . . . 6 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
86, 7ax-mp 5 . . . . 5 𝑁:ℕ01-1-onto→ω
9 f1of 5524 . . . . 5 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
108, 9mp1i 10 . . . 4 (𝜑𝑁:ℕ0⟶ω)
11 ennnfonelemex.p . . . 4 (𝜑𝑃 ∈ ℕ0)
1210, 11ffvelcdmd 5718 . . 3 (𝜑 → (𝑁𝑃) ∈ ω)
133, 4, 12rspcdva 2882 . 2 (𝜑 → ∃𝑘 ∈ ω ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
14 f1of 5524 . . . . 5 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
156, 14mp1i 10 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑁:ω⟶ℕ0)
16 peano2 4644 . . . . 5 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
1716ad2antrl 490 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → suc 𝑘 ∈ ω)
1815, 17ffvelcdmd 5718 . . 3 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℕ0)
19 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
2019ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝐹:ω–onto𝐴)
21 fofun 5501 . . . . . . . 8 (𝐹:ω–onto𝐴 → Fun 𝐹)
2220, 21syl 14 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → Fun 𝐹)
23 vex 2775 . . . . . . . . . 10 𝑘 ∈ V
2423sucid 4465 . . . . . . . . 9 𝑘 ∈ suc 𝑘
25 simprl 529 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑘 ∈ ω)
2625adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝑘 ∈ ω)
27 fof 5500 . . . . . . . . . . . 12 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
28 fdm 5433 . . . . . . . . . . . 12 (𝐹:ω⟶𝐴 → dom 𝐹 = ω)
2920, 27, 283syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → dom 𝐹 = ω)
3026, 29eleqtrrd 2285 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝑘 ∈ dom 𝐹)
31 funfvima 5818 . . . . . . . . . 10 ((Fun 𝐹𝑘 ∈ dom 𝐹) → (𝑘 ∈ suc 𝑘 → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘)))
3222, 30, 31syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝑘 ∈ suc 𝑘 → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘)))
3324, 32mpi 15 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘))
34 simpr 110 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)))
35 ennnfonelemh.dceq . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3635adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3719adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝐹:ω–onto𝐴)
384adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
39 fveq2 5578 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
4039neeq2d 2395 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑎 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑎)))
4140cbvralv 2738 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
4241rexbii 2513 . . . . . . . . . . . . . . . . . . . 20 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
43 fveq2 5578 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑏 → (𝐹𝑘) = (𝐹𝑏))
4443neeq1d 2394 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑏 → ((𝐹𝑘) ≠ (𝐹𝑎) ↔ (𝐹𝑏) ≠ (𝐹𝑎)))
4544ralbidv 2506 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑏 → (∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎)))
4645cbvrexv 2739 . . . . . . . . . . . . . . . . . . . 20 (∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎) ↔ ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4742, 46bitri 184 . . . . . . . . . . . . . . . . . . 19 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4847ralbii 2512 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4938, 48sylib 122 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
50 ennnfonelemh.g . . . . . . . . . . . . . . . . 17 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
51 ennnfonelemh.j . . . . . . . . . . . . . . . . 17 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
52 ennnfonelemh.h . . . . . . . . . . . . . . . . 17 𝐻 = seq0(𝐺, 𝐽)
5336, 37, 49, 50, 5, 51, 52, 18ennnfonelemhf1o 12817 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))))
54 f1ofun 5526 . . . . . . . . . . . . . . . 16 ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5553, 54syl 14 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5655ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5711adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ∈ ℕ0)
586, 14mp1i 10 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ω) → 𝑁:ω⟶ℕ0)
5916adantl 277 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ω) → suc 𝑘 ∈ ω)
6058, 59ffvelcdmd 5718 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ω) → (𝑁‘suc 𝑘) ∈ ℕ0)
6160adantrr 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℕ0)
6257nn0red 9351 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ∈ ℝ)
6361nn0red 9351 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℝ)
64 f1ocnvfv2 5849 . . . . . . . . . . . . . . . . . . 19 ((𝑁:ω–1-1-onto→ℕ0𝑃 ∈ ℕ0) → (𝑁‘(𝑁𝑃)) = 𝑃)
656, 57, 64sylancr 414 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁𝑃)) = 𝑃)
6612adantr 276 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ ω)
67 simprr 531 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
6837, 25, 66, 67ennnfonelemk 12804 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ 𝑘)
69 elelsuc 4457 . . . . . . . . . . . . . . . . . . . 20 ((𝑁𝑃) ∈ 𝑘 → (𝑁𝑃) ∈ suc 𝑘)
7068, 69syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ suc 𝑘)
71 0zd 9386 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 0 ∈ ℤ)
7271, 5, 66, 17frec2uzltd 10550 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝑁𝑃) ∈ suc 𝑘 → (𝑁‘(𝑁𝑃)) < (𝑁‘suc 𝑘)))
7370, 72mpd 13 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁𝑃)) < (𝑁‘suc 𝑘))
7465, 73eqbrtrrd 4069 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 < (𝑁‘suc 𝑘))
7562, 63, 74ltled 8193 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ≤ (𝑁‘suc 𝑘))
7636, 37, 38, 50, 5, 51, 52, 57, 61, 75ennnfoneleminc 12815 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)))
7776ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)))
78 simpr 110 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → 𝑠 ∈ dom (𝐻𝑃))
79 funssfv 5604 . . . . . . . . . . . . . 14 ((Fun (𝐻‘(𝑁‘suc 𝑘)) ∧ (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻‘(𝑁‘suc 𝑘))‘𝑠) = ((𝐻𝑃)‘𝑠))
8056, 77, 78, 79syl3anc 1250 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻‘(𝑁‘suc 𝑘))‘𝑠) = ((𝐻𝑃)‘𝑠))
8180eqcomd 2211 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))
8281ralrimiva 2579 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))
8336, 37, 49, 50, 5, 51, 52, 57ennnfonelemhf1o 12817 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)))
84 f1ofun 5526 . . . . . . . . . . . . . 14 ((𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)) → Fun (𝐻𝑃))
8583, 84syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → Fun (𝐻𝑃))
86 eqfunfv 5684 . . . . . . . . . . . . 13 ((Fun (𝐻𝑃) ∧ Fun (𝐻‘(𝑁‘suc 𝑘))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8785, 55, 86syl2anc 411 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8887adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8934, 82, 88mpbir2and 947 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)))
9089rneqd 4908 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻𝑃) = ran (𝐻‘(𝑁‘suc 𝑘)))
91 dff1o5 5533 . . . . . . . . . . . 12 ((𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)) ↔ ((𝐻𝑃):dom (𝐻𝑃)–1-1→(𝐹 “ (𝑁𝑃)) ∧ ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃))))
9283, 91sylib 122 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻𝑃):dom (𝐻𝑃)–1-1→(𝐹 “ (𝑁𝑃)) ∧ ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃))))
9392simprd 114 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃)))
9493adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃)))
95 f1ocnvfv1 5848 . . . . . . . . . . . . . . . 16 ((𝑁:ω–1-1-onto→ℕ0 ∧ suc 𝑘 ∈ ω) → (𝑁‘(𝑁‘suc 𝑘)) = suc 𝑘)
966, 17, 95sylancr 414 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁‘suc 𝑘)) = suc 𝑘)
9796imaeq2d 5023 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) = (𝐹 “ suc 𝑘))
98 f1oeq3 5514 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) = (𝐹 “ suc 𝑘) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) ↔ (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘)))
9997, 98syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) ↔ (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘)))
10053, 99mpbid 147 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘))
101 dff1o5 5533 . . . . . . . . . . . 12 ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘) ↔ ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1→(𝐹 “ suc 𝑘) ∧ ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘)))
102100, 101sylib 122 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1→(𝐹 “ suc 𝑘) ∧ ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘)))
103102simprd 114 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘))
104103adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘))
10590, 94, 1043eqtr3d 2246 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹 “ (𝑁𝑃)) = (𝐹 “ suc 𝑘))
10633, 105eleqtrrd 2285 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹𝑘) ∈ (𝐹 “ (𝑁𝑃)))
107 fvelima 5632 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹𝑘) ∈ (𝐹 “ (𝑁𝑃))) → ∃𝑞 ∈ (𝑁𝑃)(𝐹𝑞) = (𝐹𝑘))
10822, 106, 107syl2anc 411 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ∃𝑞 ∈ (𝑁𝑃)(𝐹𝑞) = (𝐹𝑘))
109 simprr 531 . . . . . . 7 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑞) = (𝐹𝑘))
110 fveq2 5578 . . . . . . . . . 10 (𝑗 = 𝑞 → (𝐹𝑗) = (𝐹𝑞))
111110neeq2d 2395 . . . . . . . . 9 (𝑗 = 𝑞 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑞)))
11267ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
113 elelsuc 4457 . . . . . . . . . 10 (𝑞 ∈ (𝑁𝑃) → 𝑞 ∈ suc (𝑁𝑃))
114113ad2antrl 490 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → 𝑞 ∈ suc (𝑁𝑃))
115111, 112, 114rspcdva 2882 . . . . . . . 8 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑘) ≠ (𝐹𝑞))
116115necomd 2462 . . . . . . 7 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑞) ≠ (𝐹𝑘))
117109, 116pm2.21ddne 2459 . . . . . 6 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → ⊥)
118108, 117rexlimddv 2628 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ⊥)
119118inegd 1392 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ¬ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)))
120 dmss 4878 . . . . . 6 ((𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)) → dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)))
12176, 120syl 14 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)))
12235, 19, 4, 50, 5, 51, 52, 11ennnfonelemom 12812 . . . . . . 7 (𝜑 → dom (𝐻𝑃) ∈ ω)
123122adantr 276 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ∈ ω)
12442a1i 9 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎)))
125124ralbidv 2506 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎)))
12638, 125mpbid 147 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
12736, 37, 126, 50, 5, 51, 52, 61ennnfonelemom 12812 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω)
128 nntri1 6584 . . . . . 6 ((dom (𝐻𝑃) ∈ ω ∧ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω) → (dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)) ↔ ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
129123, 127, 128syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)) ↔ ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
130121, 129mpbid 147 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃))
131 nntri3or 6581 . . . . 5 ((dom (𝐻𝑃) ∈ ω ∧ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω) → (dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
132123, 127, 131syl2anc 411 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
133119, 130, 132ecase23d 1363 . . 3 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)))
134 fveq2 5578 . . . . . 6 (𝑖 = (𝑁‘suc 𝑘) → (𝐻𝑖) = (𝐻‘(𝑁‘suc 𝑘)))
135134dmeqd 4881 . . . . 5 (𝑖 = (𝑁‘suc 𝑘) → dom (𝐻𝑖) = dom (𝐻‘(𝑁‘suc 𝑘)))
136135eleq2d 2275 . . . 4 (𝑖 = (𝑁‘suc 𝑘) → (dom (𝐻𝑃) ∈ dom (𝐻𝑖) ↔ dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘))))
137136rspcev 2877 . . 3 (((𝑁‘suc 𝑘) ∈ ℕ0 ∧ dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘))) → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
13818, 133, 137syl2anc 411 . 2 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
13913, 138rexlimddv 2628 1 (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 836  w3o 980   = wceq 1373  wfal 1378  wcel 2176  wne 2376  wral 2484  wrex 2485  cun 3164  wss 3166  c0 3460  ifcif 3571  {csn 3633  cop 3636   class class class wbr 4045  cmpt 4106  suc csuc 4413  ωcom 4639  ccnv 4675  dom cdm 4676  ran crn 4677  cima 4679  Fun wfun 5266  wf 5268  1-1wf1 5269  ontowfo 5270  1-1-ontowf1o 5271  cfv 5272  (class class class)co 5946  cmpo 5948  freccfrec 6478  pm cpm 6738  0cc0 7927  1c1 7928   + caddc 7930   < clt 8109  cmin 8245  0cn0 9297  cz 9374  seqcseq 10594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pm 6740  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-seqfrec 10595
This theorem is referenced by:  ennnfonelemhom  12819
  Copyright terms: Public domain W3C validator