ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemex GIF version

Theorem ennnfonelemex 12369
Description: Lemma for ennnfone 12380. Extending the sequence (𝐻𝑃) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemex.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemex (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑗,𝐹,𝑘,𝑛   𝑥,𝐹,𝑦   𝑗,𝐺   𝑗,𝐻,𝑘,𝑛   𝑖,𝐻,𝑘   𝑥,𝐻,𝑦,𝑘   𝑗,𝐽   𝑗,𝑁,𝑘,𝑛   𝑖,𝑁   𝑥,𝑁,𝑦   𝑃,𝑗,𝑘,𝑛   𝑥,𝑃,𝑦   𝑃,𝑖   𝜑,𝑗,𝑘,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑖)   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)

Proof of Theorem ennnfonelemex
Dummy variables 𝑎 𝑏 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4387 . . . . 5 (𝑛 = (𝑁𝑃) → suc 𝑛 = suc (𝑁𝑃))
21raleqdv 2671 . . . 4 (𝑛 = (𝑁𝑃) → (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗)))
32rexbidv 2471 . . 3 (𝑛 = (𝑁𝑃) → (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗)))
4 ennnfonelemh.ne . . 3 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
5 ennnfonelemh.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
65frechashgf1o 10384 . . . . . 6 𝑁:ω–1-1-onto→ℕ0
7 f1ocnv 5455 . . . . . 6 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
86, 7ax-mp 5 . . . . 5 𝑁:ℕ01-1-onto→ω
9 f1of 5442 . . . . 5 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
108, 9mp1i 10 . . . 4 (𝜑𝑁:ℕ0⟶ω)
11 ennnfonelemex.p . . . 4 (𝜑𝑃 ∈ ℕ0)
1210, 11ffvelrnd 5632 . . 3 (𝜑 → (𝑁𝑃) ∈ ω)
133, 4, 12rspcdva 2839 . 2 (𝜑 → ∃𝑘 ∈ ω ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
14 f1of 5442 . . . . 5 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
156, 14mp1i 10 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑁:ω⟶ℕ0)
16 peano2 4579 . . . . 5 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
1716ad2antrl 487 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → suc 𝑘 ∈ ω)
1815, 17ffvelrnd 5632 . . 3 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℕ0)
19 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
2019ad2antrr 485 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝐹:ω–onto𝐴)
21 fofun 5421 . . . . . . . 8 (𝐹:ω–onto𝐴 → Fun 𝐹)
2220, 21syl 14 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → Fun 𝐹)
23 vex 2733 . . . . . . . . . 10 𝑘 ∈ V
2423sucid 4402 . . . . . . . . 9 𝑘 ∈ suc 𝑘
25 simprl 526 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑘 ∈ ω)
2625adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝑘 ∈ ω)
27 fof 5420 . . . . . . . . . . . 12 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
28 fdm 5353 . . . . . . . . . . . 12 (𝐹:ω⟶𝐴 → dom 𝐹 = ω)
2920, 27, 283syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → dom 𝐹 = ω)
3026, 29eleqtrrd 2250 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝑘 ∈ dom 𝐹)
31 funfvima 5727 . . . . . . . . . 10 ((Fun 𝐹𝑘 ∈ dom 𝐹) → (𝑘 ∈ suc 𝑘 → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘)))
3222, 30, 31syl2anc 409 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝑘 ∈ suc 𝑘 → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘)))
3324, 32mpi 15 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘))
34 simpr 109 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)))
35 ennnfonelemh.dceq . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3635adantr 274 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3719adantr 274 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝐹:ω–onto𝐴)
384adantr 274 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
39 fveq2 5496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
4039neeq2d 2359 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑎 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑎)))
4140cbvralv 2696 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
4241rexbii 2477 . . . . . . . . . . . . . . . . . . . 20 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
43 fveq2 5496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑏 → (𝐹𝑘) = (𝐹𝑏))
4443neeq1d 2358 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑏 → ((𝐹𝑘) ≠ (𝐹𝑎) ↔ (𝐹𝑏) ≠ (𝐹𝑎)))
4544ralbidv 2470 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑏 → (∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎)))
4645cbvrexv 2697 . . . . . . . . . . . . . . . . . . . 20 (∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎) ↔ ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4742, 46bitri 183 . . . . . . . . . . . . . . . . . . 19 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4847ralbii 2476 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4938, 48sylib 121 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
50 ennnfonelemh.g . . . . . . . . . . . . . . . . 17 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
51 ennnfonelemh.j . . . . . . . . . . . . . . . . 17 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
52 ennnfonelemh.h . . . . . . . . . . . . . . . . 17 𝐻 = seq0(𝐺, 𝐽)
5336, 37, 49, 50, 5, 51, 52, 18ennnfonelemhf1o 12368 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))))
54 f1ofun 5444 . . . . . . . . . . . . . . . 16 ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5553, 54syl 14 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5655ad2antrr 485 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5711adantr 274 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ∈ ℕ0)
586, 14mp1i 10 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ω) → 𝑁:ω⟶ℕ0)
5916adantl 275 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ω) → suc 𝑘 ∈ ω)
6058, 59ffvelrnd 5632 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ω) → (𝑁‘suc 𝑘) ∈ ℕ0)
6160adantrr 476 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℕ0)
6257nn0red 9189 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ∈ ℝ)
6361nn0red 9189 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℝ)
64 f1ocnvfv2 5757 . . . . . . . . . . . . . . . . . . 19 ((𝑁:ω–1-1-onto→ℕ0𝑃 ∈ ℕ0) → (𝑁‘(𝑁𝑃)) = 𝑃)
656, 57, 64sylancr 412 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁𝑃)) = 𝑃)
6612adantr 274 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ ω)
67 simprr 527 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
6837, 25, 66, 67ennnfonelemk 12355 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ 𝑘)
69 elelsuc 4394 . . . . . . . . . . . . . . . . . . . 20 ((𝑁𝑃) ∈ 𝑘 → (𝑁𝑃) ∈ suc 𝑘)
7068, 69syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ suc 𝑘)
71 0zd 9224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 0 ∈ ℤ)
7271, 5, 66, 17frec2uzltd 10359 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝑁𝑃) ∈ suc 𝑘 → (𝑁‘(𝑁𝑃)) < (𝑁‘suc 𝑘)))
7370, 72mpd 13 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁𝑃)) < (𝑁‘suc 𝑘))
7465, 73eqbrtrrd 4013 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 < (𝑁‘suc 𝑘))
7562, 63, 74ltled 8038 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ≤ (𝑁‘suc 𝑘))
7636, 37, 38, 50, 5, 51, 52, 57, 61, 75ennnfoneleminc 12366 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)))
7776ad2antrr 485 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)))
78 simpr 109 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → 𝑠 ∈ dom (𝐻𝑃))
79 funssfv 5522 . . . . . . . . . . . . . 14 ((Fun (𝐻‘(𝑁‘suc 𝑘)) ∧ (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻‘(𝑁‘suc 𝑘))‘𝑠) = ((𝐻𝑃)‘𝑠))
8056, 77, 78, 79syl3anc 1233 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻‘(𝑁‘suc 𝑘))‘𝑠) = ((𝐻𝑃)‘𝑠))
8180eqcomd 2176 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))
8281ralrimiva 2543 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))
8336, 37, 49, 50, 5, 51, 52, 57ennnfonelemhf1o 12368 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)))
84 f1ofun 5444 . . . . . . . . . . . . . 14 ((𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)) → Fun (𝐻𝑃))
8583, 84syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → Fun (𝐻𝑃))
86 eqfunfv 5598 . . . . . . . . . . . . 13 ((Fun (𝐻𝑃) ∧ Fun (𝐻‘(𝑁‘suc 𝑘))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8785, 55, 86syl2anc 409 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8887adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8934, 82, 88mpbir2and 939 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)))
9089rneqd 4840 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻𝑃) = ran (𝐻‘(𝑁‘suc 𝑘)))
91 dff1o5 5451 . . . . . . . . . . . 12 ((𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)) ↔ ((𝐻𝑃):dom (𝐻𝑃)–1-1→(𝐹 “ (𝑁𝑃)) ∧ ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃))))
9283, 91sylib 121 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻𝑃):dom (𝐻𝑃)–1-1→(𝐹 “ (𝑁𝑃)) ∧ ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃))))
9392simprd 113 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃)))
9493adantr 274 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃)))
95 f1ocnvfv1 5756 . . . . . . . . . . . . . . . 16 ((𝑁:ω–1-1-onto→ℕ0 ∧ suc 𝑘 ∈ ω) → (𝑁‘(𝑁‘suc 𝑘)) = suc 𝑘)
966, 17, 95sylancr 412 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁‘suc 𝑘)) = suc 𝑘)
9796imaeq2d 4953 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) = (𝐹 “ suc 𝑘))
98 f1oeq3 5433 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) = (𝐹 “ suc 𝑘) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) ↔ (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘)))
9997, 98syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) ↔ (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘)))
10053, 99mpbid 146 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘))
101 dff1o5 5451 . . . . . . . . . . . 12 ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘) ↔ ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1→(𝐹 “ suc 𝑘) ∧ ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘)))
102100, 101sylib 121 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1→(𝐹 “ suc 𝑘) ∧ ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘)))
103102simprd 113 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘))
104103adantr 274 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘))
10590, 94, 1043eqtr3d 2211 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹 “ (𝑁𝑃)) = (𝐹 “ suc 𝑘))
10633, 105eleqtrrd 2250 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹𝑘) ∈ (𝐹 “ (𝑁𝑃)))
107 fvelima 5548 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹𝑘) ∈ (𝐹 “ (𝑁𝑃))) → ∃𝑞 ∈ (𝑁𝑃)(𝐹𝑞) = (𝐹𝑘))
10822, 106, 107syl2anc 409 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ∃𝑞 ∈ (𝑁𝑃)(𝐹𝑞) = (𝐹𝑘))
109 simprr 527 . . . . . . 7 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑞) = (𝐹𝑘))
110 fveq2 5496 . . . . . . . . . 10 (𝑗 = 𝑞 → (𝐹𝑗) = (𝐹𝑞))
111110neeq2d 2359 . . . . . . . . 9 (𝑗 = 𝑞 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑞)))
11267ad2antrr 485 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
113 elelsuc 4394 . . . . . . . . . 10 (𝑞 ∈ (𝑁𝑃) → 𝑞 ∈ suc (𝑁𝑃))
114113ad2antrl 487 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → 𝑞 ∈ suc (𝑁𝑃))
115111, 112, 114rspcdva 2839 . . . . . . . 8 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑘) ≠ (𝐹𝑞))
116115necomd 2426 . . . . . . 7 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑞) ≠ (𝐹𝑘))
117109, 116pm2.21ddne 2423 . . . . . 6 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → ⊥)
118108, 117rexlimddv 2592 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ⊥)
119118inegd 1367 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ¬ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)))
120 dmss 4810 . . . . . 6 ((𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)) → dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)))
12176, 120syl 14 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)))
12235, 19, 4, 50, 5, 51, 52, 11ennnfonelemom 12363 . . . . . . 7 (𝜑 → dom (𝐻𝑃) ∈ ω)
123122adantr 274 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ∈ ω)
12442a1i 9 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎)))
125124ralbidv 2470 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎)))
12638, 125mpbid 146 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
12736, 37, 126, 50, 5, 51, 52, 61ennnfonelemom 12363 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω)
128 nntri1 6475 . . . . . 6 ((dom (𝐻𝑃) ∈ ω ∧ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω) → (dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)) ↔ ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
129123, 127, 128syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)) ↔ ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
130121, 129mpbid 146 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃))
131 nntri3or 6472 . . . . 5 ((dom (𝐻𝑃) ∈ ω ∧ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω) → (dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
132123, 127, 131syl2anc 409 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
133119, 130, 132ecase23d 1345 . . 3 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)))
134 fveq2 5496 . . . . . 6 (𝑖 = (𝑁‘suc 𝑘) → (𝐻𝑖) = (𝐻‘(𝑁‘suc 𝑘)))
135134dmeqd 4813 . . . . 5 (𝑖 = (𝑁‘suc 𝑘) → dom (𝐻𝑖) = dom (𝐻‘(𝑁‘suc 𝑘)))
136135eleq2d 2240 . . . 4 (𝑖 = (𝑁‘suc 𝑘) → (dom (𝐻𝑃) ∈ dom (𝐻𝑖) ↔ dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘))))
137136rspcev 2834 . . 3 (((𝑁‘suc 𝑘) ∈ ℕ0 ∧ dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘))) → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
13818, 133, 137syl2anc 409 . 2 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
13913, 138rexlimddv 2592 1 (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 829  w3o 972   = wceq 1348  wfal 1353  wcel 2141  wne 2340  wral 2448  wrex 2449  cun 3119  wss 3121  c0 3414  ifcif 3526  {csn 3583  cop 3586   class class class wbr 3989  cmpt 4050  suc csuc 4350  ωcom 4574  ccnv 4610  dom cdm 4611  ran crn 4612  cima 4614  Fun wfun 5192  wf 5194  1-1wf1 5195  ontowfo 5196  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  cmpo 5855  freccfrec 6369  pm cpm 6627  0cc0 7774  1c1 7775   + caddc 7777   < clt 7954  cmin 8090  0cn0 9135  cz 9212  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pm 6629  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402
This theorem is referenced by:  ennnfonelemhom  12370
  Copyright terms: Public domain W3C validator