Step | Hyp | Ref
| Expression |
1 | | suceq 4387 |
. . . . 5
⊢ (𝑛 = (◡𝑁‘𝑃) → suc 𝑛 = suc (◡𝑁‘𝑃)) |
2 | 1 | raleqdv 2671 |
. . . 4
⊢ (𝑛 = (◡𝑁‘𝑃) → (∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) |
3 | 2 | rexbidv 2471 |
. . 3
⊢ (𝑛 = (◡𝑁‘𝑃) → (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑘 ∈ ω ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) |
4 | | ennnfonelemh.ne |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
5 | | ennnfonelemh.n |
. . . . . . 7
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
6 | 5 | frechashgf1o 10384 |
. . . . . 6
⊢ 𝑁:ω–1-1-onto→ℕ0 |
7 | | f1ocnv 5455 |
. . . . . 6
⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) |
8 | 6, 7 | ax-mp 5 |
. . . . 5
⊢ ◡𝑁:ℕ0–1-1-onto→ω |
9 | | f1of 5442 |
. . . . 5
⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) |
10 | 8, 9 | mp1i 10 |
. . . 4
⊢ (𝜑 → ◡𝑁:ℕ0⟶ω) |
11 | | ennnfonelemex.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
12 | 10, 11 | ffvelrnd 5632 |
. . 3
⊢ (𝜑 → (◡𝑁‘𝑃) ∈ ω) |
13 | 3, 4, 12 | rspcdva 2839 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ ω ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
14 | | f1of 5442 |
. . . . 5
⊢ (𝑁:ω–1-1-onto→ℕ0 → 𝑁:ω⟶ℕ0) |
15 | 6, 14 | mp1i 10 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → 𝑁:ω⟶ℕ0) |
16 | | peano2 4579 |
. . . . 5
⊢ (𝑘 ∈ ω → suc 𝑘 ∈
ω) |
17 | 16 | ad2antrl 487 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → suc 𝑘 ∈ ω) |
18 | 15, 17 | ffvelrnd 5632 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (𝑁‘suc 𝑘) ∈
ℕ0) |
19 | | ennnfonelemh.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
20 | 19 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝐹:ω–onto→𝐴) |
21 | | fofun 5421 |
. . . . . . . 8
⊢ (𝐹:ω–onto→𝐴 → Fun 𝐹) |
22 | 20, 21 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → Fun 𝐹) |
23 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑘 ∈ V |
24 | 23 | sucid 4402 |
. . . . . . . . 9
⊢ 𝑘 ∈ suc 𝑘 |
25 | | simprl 526 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → 𝑘 ∈ ω) |
26 | 25 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝑘 ∈ ω) |
27 | | fof 5420 |
. . . . . . . . . . . 12
⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) |
28 | | fdm 5353 |
. . . . . . . . . . . 12
⊢ (𝐹:ω⟶𝐴 → dom 𝐹 = ω) |
29 | 20, 27, 28 | 3syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → dom 𝐹 = ω) |
30 | 26, 29 | eleqtrrd 2250 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝑘 ∈ dom 𝐹) |
31 | | funfvima 5727 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑘 ∈ dom 𝐹) → (𝑘 ∈ suc 𝑘 → (𝐹‘𝑘) ∈ (𝐹 “ suc 𝑘))) |
32 | 22, 30, 31 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝑘 ∈ suc 𝑘 → (𝐹‘𝑘) ∈ (𝐹 “ suc 𝑘))) |
33 | 24, 32 | mpi 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹‘𝑘) ∈ (𝐹 “ suc 𝑘)) |
34 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) |
35 | | ennnfonelemh.dceq |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
36 | 35 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
37 | 19 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → 𝐹:ω–onto→𝐴) |
38 | 4 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
39 | | fveq2 5496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑎 → (𝐹‘𝑗) = (𝐹‘𝑎)) |
40 | 39 | neeq2d 2359 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑎 → ((𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝑘) ≠ (𝐹‘𝑎))) |
41 | 40 | cbvralv 2696 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑗 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑎 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑎)) |
42 | 41 | rexbii 2477 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑘 ∈
ω ∀𝑗 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑎)) |
43 | | fveq2 5496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑏 → (𝐹‘𝑘) = (𝐹‘𝑏)) |
44 | 43 | neeq1d 2358 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) ≠ (𝐹‘𝑎) ↔ (𝐹‘𝑏) ≠ (𝐹‘𝑎))) |
45 | 44 | ralbidv 2470 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑏 → (∀𝑎 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑎))) |
46 | 45 | cbvrexv 2697 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑘 ∈
ω ∀𝑎 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑎) ↔ ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑎)) |
47 | 42, 46 | bitri 183 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑘 ∈
ω ∀𝑗 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑎)) |
48 | 47 | ralbii 2476 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
ω ∃𝑘 ∈
ω ∀𝑗 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑎)) |
49 | 38, 48 | sylib 121 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑎)) |
50 | | ennnfonelemh.g |
. . . . . . . . . . . . . . . . 17
⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
51 | | ennnfonelemh.j |
. . . . . . . . . . . . . . . . 17
⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
52 | | ennnfonelemh.h |
. . . . . . . . . . . . . . . . 17
⊢ 𝐻 = seq0(𝐺, 𝐽) |
53 | 36, 37, 49, 50, 5, 51, 52, 18 | ennnfonelemhf1o 12368 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑁‘suc 𝑘)))) |
54 | | f1ofun 5444 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑁‘suc 𝑘))) → Fun (𝐻‘(𝑁‘suc 𝑘))) |
55 | 53, 54 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → Fun (𝐻‘(𝑁‘suc 𝑘))) |
56 | 55 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻‘𝑃)) → Fun (𝐻‘(𝑁‘suc 𝑘))) |
57 | 11 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → 𝑃 ∈
ℕ0) |
58 | 6, 14 | mp1i 10 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ω) → 𝑁:ω⟶ℕ0) |
59 | 16 | adantl 275 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ω) → suc 𝑘 ∈
ω) |
60 | 58, 59 | ffvelrnd 5632 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ω) → (𝑁‘suc 𝑘) ∈
ℕ0) |
61 | 60 | adantrr 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (𝑁‘suc 𝑘) ∈
ℕ0) |
62 | 57 | nn0red 9189 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → 𝑃 ∈ ℝ) |
63 | 61 | nn0red 9189 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (𝑁‘suc 𝑘) ∈ ℝ) |
64 | | f1ocnvfv2 5757 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁:ω–1-1-onto→ℕ0 ∧ 𝑃 ∈ ℕ0) → (𝑁‘(◡𝑁‘𝑃)) = 𝑃) |
65 | 6, 57, 64 | sylancr 412 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (𝑁‘(◡𝑁‘𝑃)) = 𝑃) |
66 | 12 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (◡𝑁‘𝑃) ∈ ω) |
67 | | simprr 527 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
68 | 37, 25, 66, 67 | ennnfonelemk 12355 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (◡𝑁‘𝑃) ∈ 𝑘) |
69 | | elelsuc 4394 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡𝑁‘𝑃) ∈ 𝑘 → (◡𝑁‘𝑃) ∈ suc 𝑘) |
70 | 68, 69 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (◡𝑁‘𝑃) ∈ suc 𝑘) |
71 | | 0zd 9224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → 0 ∈ ℤ) |
72 | 71, 5, 66, 17 | frec2uzltd 10359 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ((◡𝑁‘𝑃) ∈ suc 𝑘 → (𝑁‘(◡𝑁‘𝑃)) < (𝑁‘suc 𝑘))) |
73 | 70, 72 | mpd 13 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (𝑁‘(◡𝑁‘𝑃)) < (𝑁‘suc 𝑘)) |
74 | 65, 73 | eqbrtrrd 4013 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → 𝑃 < (𝑁‘suc 𝑘)) |
75 | 62, 63, 74 | ltled 8038 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → 𝑃 ≤ (𝑁‘suc 𝑘)) |
76 | 36, 37, 38, 50, 5, 51, 52, 57, 61, 75 | ennnfoneleminc 12366 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘))) |
77 | 76 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻‘𝑃)) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘))) |
78 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻‘𝑃)) → 𝑠 ∈ dom (𝐻‘𝑃)) |
79 | | funssfv 5522 |
. . . . . . . . . . . . . 14
⊢ ((Fun
(𝐻‘(𝑁‘suc 𝑘)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)) ∧ 𝑠 ∈ dom (𝐻‘𝑃)) → ((𝐻‘(𝑁‘suc 𝑘))‘𝑠) = ((𝐻‘𝑃)‘𝑠)) |
80 | 56, 77, 78, 79 | syl3anc 1233 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻‘𝑃)) → ((𝐻‘(𝑁‘suc 𝑘))‘𝑠) = ((𝐻‘𝑃)‘𝑠)) |
81 | 80 | eqcomd 2176 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻‘𝑃)) → ((𝐻‘𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠)) |
82 | 81 | ralrimiva 2543 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ∀𝑠 ∈ dom (𝐻‘𝑃)((𝐻‘𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠)) |
83 | 36, 37, 49, 50, 5, 51, 52, 57 | ennnfonelemhf1o 12368 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (𝐻‘𝑃):dom (𝐻‘𝑃)–1-1-onto→(𝐹 “ (◡𝑁‘𝑃))) |
84 | | f1ofun 5444 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑃):dom (𝐻‘𝑃)–1-1-onto→(𝐹 “ (◡𝑁‘𝑃)) → Fun (𝐻‘𝑃)) |
85 | 83, 84 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → Fun (𝐻‘𝑃)) |
86 | | eqfunfv 5598 |
. . . . . . . . . . . . 13
⊢ ((Fun
(𝐻‘𝑃) ∧ Fun (𝐻‘(𝑁‘suc 𝑘))) → ((𝐻‘𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻‘𝑃)((𝐻‘𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠)))) |
87 | 85, 55, 86 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ((𝐻‘𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻‘𝑃)((𝐻‘𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠)))) |
88 | 87 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ((𝐻‘𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻‘𝑃)((𝐻‘𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠)))) |
89 | 34, 82, 88 | mpbir2and 939 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐻‘𝑃) = (𝐻‘(𝑁‘suc 𝑘))) |
90 | 89 | rneqd 4840 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻‘𝑃) = ran (𝐻‘(𝑁‘suc 𝑘))) |
91 | | dff1o5 5451 |
. . . . . . . . . . . 12
⊢ ((𝐻‘𝑃):dom (𝐻‘𝑃)–1-1-onto→(𝐹 “ (◡𝑁‘𝑃)) ↔ ((𝐻‘𝑃):dom (𝐻‘𝑃)–1-1→(𝐹 “ (◡𝑁‘𝑃)) ∧ ran (𝐻‘𝑃) = (𝐹 “ (◡𝑁‘𝑃)))) |
92 | 83, 91 | sylib 121 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ((𝐻‘𝑃):dom (𝐻‘𝑃)–1-1→(𝐹 “ (◡𝑁‘𝑃)) ∧ ran (𝐻‘𝑃) = (𝐹 “ (◡𝑁‘𝑃)))) |
93 | 92 | simprd 113 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ran (𝐻‘𝑃) = (𝐹 “ (◡𝑁‘𝑃))) |
94 | 93 | adantr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻‘𝑃) = (𝐹 “ (◡𝑁‘𝑃))) |
95 | | f1ocnvfv1 5756 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁:ω–1-1-onto→ℕ0 ∧ suc 𝑘 ∈ ω) → (◡𝑁‘(𝑁‘suc 𝑘)) = suc 𝑘) |
96 | 6, 17, 95 | sylancr 412 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (◡𝑁‘(𝑁‘suc 𝑘)) = suc 𝑘) |
97 | 96 | imaeq2d 4953 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (𝐹 “ (◡𝑁‘(𝑁‘suc 𝑘))) = (𝐹 “ suc 𝑘)) |
98 | | f1oeq3 5433 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 “ (◡𝑁‘(𝑁‘suc 𝑘))) = (𝐹 “ suc 𝑘) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑁‘suc 𝑘))) ↔ (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘))) |
99 | 97, 98 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (◡𝑁‘(𝑁‘suc 𝑘))) ↔ (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘))) |
100 | 53, 99 | mpbid 146 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘)) |
101 | | dff1o5 5451 |
. . . . . . . . . . . 12
⊢ ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘) ↔ ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1→(𝐹 “ suc 𝑘) ∧ ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘))) |
102 | 100, 101 | sylib 121 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1→(𝐹 “ suc 𝑘) ∧ ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘))) |
103 | 102 | simprd 113 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘)) |
104 | 103 | adantr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘)) |
105 | 90, 94, 104 | 3eqtr3d 2211 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹 “ (◡𝑁‘𝑃)) = (𝐹 “ suc 𝑘)) |
106 | 33, 105 | eleqtrrd 2250 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹‘𝑘) ∈ (𝐹 “ (◡𝑁‘𝑃))) |
107 | | fvelima 5548 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ (𝐹‘𝑘) ∈ (𝐹 “ (◡𝑁‘𝑃))) → ∃𝑞 ∈ (◡𝑁‘𝑃)(𝐹‘𝑞) = (𝐹‘𝑘)) |
108 | 22, 106, 107 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ∃𝑞 ∈ (◡𝑁‘𝑃)(𝐹‘𝑞) = (𝐹‘𝑘)) |
109 | | simprr 527 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (◡𝑁‘𝑃) ∧ (𝐹‘𝑞) = (𝐹‘𝑘))) → (𝐹‘𝑞) = (𝐹‘𝑘)) |
110 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑞 → (𝐹‘𝑗) = (𝐹‘𝑞)) |
111 | 110 | neeq2d 2359 |
. . . . . . . . 9
⊢ (𝑗 = 𝑞 → ((𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝑘) ≠ (𝐹‘𝑞))) |
112 | 67 | ad2antrr 485 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (◡𝑁‘𝑃) ∧ (𝐹‘𝑞) = (𝐹‘𝑘))) → ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
113 | | elelsuc 4394 |
. . . . . . . . . 10
⊢ (𝑞 ∈ (◡𝑁‘𝑃) → 𝑞 ∈ suc (◡𝑁‘𝑃)) |
114 | 113 | ad2antrl 487 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (◡𝑁‘𝑃) ∧ (𝐹‘𝑞) = (𝐹‘𝑘))) → 𝑞 ∈ suc (◡𝑁‘𝑃)) |
115 | 111, 112,
114 | rspcdva 2839 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (◡𝑁‘𝑃) ∧ (𝐹‘𝑞) = (𝐹‘𝑘))) → (𝐹‘𝑘) ≠ (𝐹‘𝑞)) |
116 | 115 | necomd 2426 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (◡𝑁‘𝑃) ∧ (𝐹‘𝑞) = (𝐹‘𝑘))) → (𝐹‘𝑞) ≠ (𝐹‘𝑘)) |
117 | 109, 116 | pm2.21ddne 2423 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (◡𝑁‘𝑃) ∧ (𝐹‘𝑞) = (𝐹‘𝑘))) → ⊥) |
118 | 108, 117 | rexlimddv 2592 |
. . . . 5
⊢ (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) ∧ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ⊥) |
119 | 118 | inegd 1367 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ¬ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) |
120 | | dmss 4810 |
. . . . . 6
⊢ ((𝐻‘𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)) → dom (𝐻‘𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘))) |
121 | 76, 120 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → dom (𝐻‘𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘))) |
122 | 35, 19, 4, 50, 5, 51, 52, 11 | ennnfonelemom 12363 |
. . . . . . 7
⊢ (𝜑 → dom (𝐻‘𝑃) ∈ ω) |
123 | 122 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → dom (𝐻‘𝑃) ∈ ω) |
124 | 42 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑎))) |
125 | 124 | ralbidv 2470 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑎))) |
126 | 38, 125 | mpbid 146 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑎)) |
127 | 36, 37, 126, 50, 5, 51, 52, 61 | ennnfonelemom 12363 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω) |
128 | | nntri1 6475 |
. . . . . 6
⊢ ((dom
(𝐻‘𝑃) ∈ ω ∧ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω) → (dom (𝐻‘𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)) ↔ ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻‘𝑃))) |
129 | 123, 127,
128 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (dom (𝐻‘𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)) ↔ ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻‘𝑃))) |
130 | 121, 129 | mpbid 146 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻‘𝑃)) |
131 | | nntri3or 6472 |
. . . . 5
⊢ ((dom
(𝐻‘𝑃) ∈ ω ∧ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω) → (dom (𝐻‘𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻‘𝑃))) |
132 | 123, 127,
131 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → (dom (𝐻‘𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻‘𝑃))) |
133 | 119, 130,
132 | ecase23d 1345 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → dom (𝐻‘𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘))) |
134 | | fveq2 5496 |
. . . . . 6
⊢ (𝑖 = (𝑁‘suc 𝑘) → (𝐻‘𝑖) = (𝐻‘(𝑁‘suc 𝑘))) |
135 | 134 | dmeqd 4813 |
. . . . 5
⊢ (𝑖 = (𝑁‘suc 𝑘) → dom (𝐻‘𝑖) = dom (𝐻‘(𝑁‘suc 𝑘))) |
136 | 135 | eleq2d 2240 |
. . . 4
⊢ (𝑖 = (𝑁‘suc 𝑘) → (dom (𝐻‘𝑃) ∈ dom (𝐻‘𝑖) ↔ dom (𝐻‘𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)))) |
137 | 136 | rspcev 2834 |
. . 3
⊢ (((𝑁‘suc 𝑘) ∈ ℕ0 ∧ dom (𝐻‘𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘))) → ∃𝑖 ∈ ℕ0 dom (𝐻‘𝑃) ∈ dom (𝐻‘𝑖)) |
138 | 18, 133, 137 | syl2anc 409 |
. 2
⊢ ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (◡𝑁‘𝑃)(𝐹‘𝑘) ≠ (𝐹‘𝑗))) → ∃𝑖 ∈ ℕ0 dom (𝐻‘𝑃) ∈ dom (𝐻‘𝑖)) |
139 | 13, 138 | rexlimddv 2592 |
1
⊢ (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻‘𝑃) ∈ dom (𝐻‘𝑖)) |