ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemex GIF version

Theorem ennnfonelemex 12405
Description: Lemma for ennnfone 12416. Extending the sequence (𝐻𝑃) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemex.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemex (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑗,𝐹,𝑘,𝑛   𝑥,𝐹,𝑦   𝑗,𝐺   𝑗,𝐻,𝑘,𝑛   𝑖,𝐻,𝑘   𝑥,𝐻,𝑦,𝑘   𝑗,𝐽   𝑗,𝑁,𝑘,𝑛   𝑖,𝑁   𝑥,𝑁,𝑦   𝑃,𝑗,𝑘,𝑛   𝑥,𝑃,𝑦   𝑃,𝑖   𝜑,𝑗,𝑘,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑖)   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)

Proof of Theorem ennnfonelemex
Dummy variables 𝑎 𝑏 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4400 . . . . 5 (𝑛 = (𝑁𝑃) → suc 𝑛 = suc (𝑁𝑃))
21raleqdv 2678 . . . 4 (𝑛 = (𝑁𝑃) → (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗)))
32rexbidv 2478 . . 3 (𝑛 = (𝑁𝑃) → (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗)))
4 ennnfonelemh.ne . . 3 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
5 ennnfonelemh.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
65frechashgf1o 10421 . . . . . 6 𝑁:ω–1-1-onto→ℕ0
7 f1ocnv 5471 . . . . . 6 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
86, 7ax-mp 5 . . . . 5 𝑁:ℕ01-1-onto→ω
9 f1of 5458 . . . . 5 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
108, 9mp1i 10 . . . 4 (𝜑𝑁:ℕ0⟶ω)
11 ennnfonelemex.p . . . 4 (𝜑𝑃 ∈ ℕ0)
1210, 11ffvelcdmd 5649 . . 3 (𝜑 → (𝑁𝑃) ∈ ω)
133, 4, 12rspcdva 2846 . 2 (𝜑 → ∃𝑘 ∈ ω ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
14 f1of 5458 . . . . 5 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
156, 14mp1i 10 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑁:ω⟶ℕ0)
16 peano2 4592 . . . . 5 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
1716ad2antrl 490 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → suc 𝑘 ∈ ω)
1815, 17ffvelcdmd 5649 . . 3 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℕ0)
19 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
2019ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝐹:ω–onto𝐴)
21 fofun 5436 . . . . . . . 8 (𝐹:ω–onto𝐴 → Fun 𝐹)
2220, 21syl 14 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → Fun 𝐹)
23 vex 2740 . . . . . . . . . 10 𝑘 ∈ V
2423sucid 4415 . . . . . . . . 9 𝑘 ∈ suc 𝑘
25 simprl 529 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑘 ∈ ω)
2625adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝑘 ∈ ω)
27 fof 5435 . . . . . . . . . . . 12 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
28 fdm 5368 . . . . . . . . . . . 12 (𝐹:ω⟶𝐴 → dom 𝐹 = ω)
2920, 27, 283syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → dom 𝐹 = ω)
3026, 29eleqtrrd 2257 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → 𝑘 ∈ dom 𝐹)
31 funfvima 5744 . . . . . . . . . 10 ((Fun 𝐹𝑘 ∈ dom 𝐹) → (𝑘 ∈ suc 𝑘 → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘)))
3222, 30, 31syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝑘 ∈ suc 𝑘 → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘)))
3324, 32mpi 15 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹𝑘) ∈ (𝐹 “ suc 𝑘))
34 simpr 110 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)))
35 ennnfonelemh.dceq . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3635adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3719adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝐹:ω–onto𝐴)
384adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
39 fveq2 5512 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
4039neeq2d 2366 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑎 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑎)))
4140cbvralv 2703 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
4241rexbii 2484 . . . . . . . . . . . . . . . . . . . 20 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
43 fveq2 5512 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑏 → (𝐹𝑘) = (𝐹𝑏))
4443neeq1d 2365 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑏 → ((𝐹𝑘) ≠ (𝐹𝑎) ↔ (𝐹𝑏) ≠ (𝐹𝑎)))
4544ralbidv 2477 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑏 → (∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎)))
4645cbvrexv 2704 . . . . . . . . . . . . . . . . . . . 20 (∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎) ↔ ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4742, 46bitri 184 . . . . . . . . . . . . . . . . . . 19 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4847ralbii 2483 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
4938, 48sylib 122 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑎))
50 ennnfonelemh.g . . . . . . . . . . . . . . . . 17 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
51 ennnfonelemh.j . . . . . . . . . . . . . . . . 17 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
52 ennnfonelemh.h . . . . . . . . . . . . . . . . 17 𝐻 = seq0(𝐺, 𝐽)
5336, 37, 49, 50, 5, 51, 52, 18ennnfonelemhf1o 12404 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))))
54 f1ofun 5460 . . . . . . . . . . . . . . . 16 ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5553, 54syl 14 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5655ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → Fun (𝐻‘(𝑁‘suc 𝑘)))
5711adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ∈ ℕ0)
586, 14mp1i 10 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ω) → 𝑁:ω⟶ℕ0)
5916adantl 277 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ω) → suc 𝑘 ∈ ω)
6058, 59ffvelcdmd 5649 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ω) → (𝑁‘suc 𝑘) ∈ ℕ0)
6160adantrr 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℕ0)
6257nn0red 9224 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ∈ ℝ)
6361nn0red 9224 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘suc 𝑘) ∈ ℝ)
64 f1ocnvfv2 5774 . . . . . . . . . . . . . . . . . . 19 ((𝑁:ω–1-1-onto→ℕ0𝑃 ∈ ℕ0) → (𝑁‘(𝑁𝑃)) = 𝑃)
656, 57, 64sylancr 414 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁𝑃)) = 𝑃)
6612adantr 276 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ ω)
67 simprr 531 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
6837, 25, 66, 67ennnfonelemk 12391 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ 𝑘)
69 elelsuc 4407 . . . . . . . . . . . . . . . . . . . 20 ((𝑁𝑃) ∈ 𝑘 → (𝑁𝑃) ∈ suc 𝑘)
7068, 69syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁𝑃) ∈ suc 𝑘)
71 0zd 9259 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 0 ∈ ℤ)
7271, 5, 66, 17frec2uzltd 10396 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝑁𝑃) ∈ suc 𝑘 → (𝑁‘(𝑁𝑃)) < (𝑁‘suc 𝑘)))
7370, 72mpd 13 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁𝑃)) < (𝑁‘suc 𝑘))
7465, 73eqbrtrrd 4025 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 < (𝑁‘suc 𝑘))
7562, 63, 74ltled 8070 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → 𝑃 ≤ (𝑁‘suc 𝑘))
7636, 37, 38, 50, 5, 51, 52, 57, 61, 75ennnfoneleminc 12402 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)))
7776ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)))
78 simpr 110 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → 𝑠 ∈ dom (𝐻𝑃))
79 funssfv 5538 . . . . . . . . . . . . . 14 ((Fun (𝐻‘(𝑁‘suc 𝑘)) ∧ (𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻‘(𝑁‘suc 𝑘))‘𝑠) = ((𝐻𝑃)‘𝑠))
8056, 77, 78, 79syl3anc 1238 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻‘(𝑁‘suc 𝑘))‘𝑠) = ((𝐻𝑃)‘𝑠))
8180eqcomd 2183 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ 𝑠 ∈ dom (𝐻𝑃)) → ((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))
8281ralrimiva 2550 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))
8336, 37, 49, 50, 5, 51, 52, 57ennnfonelemhf1o 12404 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)))
84 f1ofun 5460 . . . . . . . . . . . . . 14 ((𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)) → Fun (𝐻𝑃))
8583, 84syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → Fun (𝐻𝑃))
86 eqfunfv 5615 . . . . . . . . . . . . 13 ((Fun (𝐻𝑃) ∧ Fun (𝐻‘(𝑁‘suc 𝑘))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8785, 55, 86syl2anc 411 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8887adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ((𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)) ↔ (dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∧ ∀𝑠 ∈ dom (𝐻𝑃)((𝐻𝑃)‘𝑠) = ((𝐻‘(𝑁‘suc 𝑘))‘𝑠))))
8934, 82, 88mpbir2and 944 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐻𝑃) = (𝐻‘(𝑁‘suc 𝑘)))
9089rneqd 4853 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻𝑃) = ran (𝐻‘(𝑁‘suc 𝑘)))
91 dff1o5 5467 . . . . . . . . . . . 12 ((𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)) ↔ ((𝐻𝑃):dom (𝐻𝑃)–1-1→(𝐹 “ (𝑁𝑃)) ∧ ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃))))
9283, 91sylib 122 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻𝑃):dom (𝐻𝑃)–1-1→(𝐹 “ (𝑁𝑃)) ∧ ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃))))
9392simprd 114 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃)))
9493adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻𝑃) = (𝐹 “ (𝑁𝑃)))
95 f1ocnvfv1 5773 . . . . . . . . . . . . . . . 16 ((𝑁:ω–1-1-onto→ℕ0 ∧ suc 𝑘 ∈ ω) → (𝑁‘(𝑁‘suc 𝑘)) = suc 𝑘)
966, 17, 95sylancr 414 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝑁‘(𝑁‘suc 𝑘)) = suc 𝑘)
9796imaeq2d 4967 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) = (𝐹 “ suc 𝑘))
98 f1oeq3 5448 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) = (𝐹 “ suc 𝑘) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) ↔ (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘)))
9997, 98syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ (𝑁‘(𝑁‘suc 𝑘))) ↔ (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘)))
10053, 99mpbid 147 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘))
101 dff1o5 5467 . . . . . . . . . . . 12 ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1-onto→(𝐹 “ suc 𝑘) ↔ ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1→(𝐹 “ suc 𝑘) ∧ ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘)))
102100, 101sylib 122 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ((𝐻‘(𝑁‘suc 𝑘)):dom (𝐻‘(𝑁‘suc 𝑘))–1-1→(𝐹 “ suc 𝑘) ∧ ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘)))
103102simprd 114 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘))
104103adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ran (𝐻‘(𝑁‘suc 𝑘)) = (𝐹 “ suc 𝑘))
10590, 94, 1043eqtr3d 2218 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹 “ (𝑁𝑃)) = (𝐹 “ suc 𝑘))
10633, 105eleqtrrd 2257 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → (𝐹𝑘) ∈ (𝐹 “ (𝑁𝑃)))
107 fvelima 5564 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹𝑘) ∈ (𝐹 “ (𝑁𝑃))) → ∃𝑞 ∈ (𝑁𝑃)(𝐹𝑞) = (𝐹𝑘))
10822, 106, 107syl2anc 411 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ∃𝑞 ∈ (𝑁𝑃)(𝐹𝑞) = (𝐹𝑘))
109 simprr 531 . . . . . . 7 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑞) = (𝐹𝑘))
110 fveq2 5512 . . . . . . . . . 10 (𝑗 = 𝑞 → (𝐹𝑗) = (𝐹𝑞))
111110neeq2d 2366 . . . . . . . . 9 (𝑗 = 𝑞 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑞)))
11267ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))
113 elelsuc 4407 . . . . . . . . . 10 (𝑞 ∈ (𝑁𝑃) → 𝑞 ∈ suc (𝑁𝑃))
114113ad2antrl 490 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → 𝑞 ∈ suc (𝑁𝑃))
115111, 112, 114rspcdva 2846 . . . . . . . 8 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑘) ≠ (𝐹𝑞))
116115necomd 2433 . . . . . . 7 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → (𝐹𝑞) ≠ (𝐹𝑘))
117109, 116pm2.21ddne 2430 . . . . . 6 ((((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) ∧ (𝑞 ∈ (𝑁𝑃) ∧ (𝐹𝑞) = (𝐹𝑘))) → ⊥)
118108, 117rexlimddv 2599 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) ∧ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘))) → ⊥)
119118inegd 1372 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ¬ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)))
120 dmss 4823 . . . . . 6 ((𝐻𝑃) ⊆ (𝐻‘(𝑁‘suc 𝑘)) → dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)))
12176, 120syl 14 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)))
12235, 19, 4, 50, 5, 51, 52, 11ennnfonelemom 12399 . . . . . . 7 (𝜑 → dom (𝐻𝑃) ∈ ω)
123122adantr 276 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ∈ ω)
12442a1i 9 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎)))
125124ralbidv 2477 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎)))
12638, 125mpbid 147 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑎 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑎))
12736, 37, 126, 50, 5, 51, 52, 61ennnfonelemom 12399 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω)
128 nntri1 6492 . . . . . 6 ((dom (𝐻𝑃) ∈ ω ∧ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω) → (dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)) ↔ ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
129123, 127, 128syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (dom (𝐻𝑃) ⊆ dom (𝐻‘(𝑁‘suc 𝑘)) ↔ ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
130121, 129mpbid 147 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ¬ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃))
131 nntri3or 6489 . . . . 5 ((dom (𝐻𝑃) ∈ ω ∧ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ ω) → (dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
132123, 127, 131syl2anc 411 . . . 4 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → (dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻𝑃) = dom (𝐻‘(𝑁‘suc 𝑘)) ∨ dom (𝐻‘(𝑁‘suc 𝑘)) ∈ dom (𝐻𝑃)))
133119, 130, 132ecase23d 1350 . . 3 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘)))
134 fveq2 5512 . . . . . 6 (𝑖 = (𝑁‘suc 𝑘) → (𝐻𝑖) = (𝐻‘(𝑁‘suc 𝑘)))
135134dmeqd 4826 . . . . 5 (𝑖 = (𝑁‘suc 𝑘) → dom (𝐻𝑖) = dom (𝐻‘(𝑁‘suc 𝑘)))
136135eleq2d 2247 . . . 4 (𝑖 = (𝑁‘suc 𝑘) → (dom (𝐻𝑃) ∈ dom (𝐻𝑖) ↔ dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘))))
137136rspcev 2841 . . 3 (((𝑁‘suc 𝑘) ∈ ℕ0 ∧ dom (𝐻𝑃) ∈ dom (𝐻‘(𝑁‘suc 𝑘))) → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
13818, 133, 137syl2anc 411 . 2 ((𝜑 ∧ (𝑘 ∈ ω ∧ ∀𝑗 ∈ suc (𝑁𝑃)(𝐹𝑘) ≠ (𝐹𝑗))) → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
13913, 138rexlimddv 2599 1 (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834  w3o 977   = wceq 1353  wfal 1358  wcel 2148  wne 2347  wral 2455  wrex 2456  cun 3127  wss 3129  c0 3422  ifcif 3534  {csn 3592  cop 3595   class class class wbr 4001  cmpt 4062  suc csuc 4363  ωcom 4587  ccnv 4623  dom cdm 4624  ran crn 4625  cima 4627  Fun wfun 5207  wf 5209  1-1wf1 5210  ontowfo 5211  1-1-ontowf1o 5212  cfv 5213  (class class class)co 5870  cmpo 5872  freccfrec 6386  pm cpm 6644  0cc0 7806  1c1 7807   + caddc 7809   < clt 7986  cmin 8122  0cn0 9170  cz 9247  seqcseq 10438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4116  ax-sep 4119  ax-nul 4127  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-iinf 4585  ax-cnex 7897  ax-resscn 7898  ax-1cn 7899  ax-1re 7900  ax-icn 7901  ax-addcl 7902  ax-addrcl 7903  ax-mulcl 7904  ax-addcom 7906  ax-addass 7908  ax-distr 7910  ax-i2m1 7911  ax-0lt1 7912  ax-0id 7914  ax-rnegex 7915  ax-cnre 7917  ax-pre-ltirr 7918  ax-pre-ltwlin 7919  ax-pre-lttrn 7920  ax-pre-ltadd 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-tr 4100  df-id 4291  df-iord 4364  df-on 4366  df-ilim 4367  df-suc 4369  df-iom 4588  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-f1 5218  df-fo 5219  df-f1o 5220  df-fv 5221  df-riota 5826  df-ov 5873  df-oprab 5874  df-mpo 5875  df-1st 6136  df-2nd 6137  df-recs 6301  df-frec 6387  df-pm 6646  df-pnf 7988  df-mnf 7989  df-xr 7990  df-ltxr 7991  df-le 7992  df-sub 8124  df-neg 8125  df-inn 8914  df-n0 9171  df-z 9248  df-uz 9523  df-seqfrec 10439
This theorem is referenced by:  ennnfonelemhom  12406
  Copyright terms: Public domain W3C validator