| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21dd | GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 620. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
| pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21dd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21dd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | pm2.21d 622 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 618 |
| This theorem is referenced by: pm2.21fal 1415 pm2.21ddne 2483 ordtriexmidlem 4610 ordtri2or2exmidlem 4617 onsucelsucexmidlem 4620 wetriext 4668 reg3exmidlemwe 4670 nntr2 6647 nnm00 6674 phpm 7023 fidifsnen 7028 dif1enen 7038 infnfi 7053 en2eqpr 7065 pr2cv1 7364 aptiprleml 7822 aptiprlemu 7823 uzdisj 10285 nn0disj 10330 zsupcllemex 10445 addmodlteq 10615 frec2uzlt2d 10621 iseqf1olemab 10719 iseqf1olemmo 10722 hashennnuni 10996 hashfiv01gt1 10999 xrmaxiflemab 11753 xrmaxiflemlub 11754 xrmaxltsup 11764 xrbdtri 11782 divalglemeunn 12427 divalglemeuneg 12429 ennnfonelemk 12966 cnplimclemle 15336 efltlemlt 15442 trilpolemlt1 16368 neapmkvlem 16394 |
| Copyright terms: Public domain | W3C validator |