Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.21dd | GIF version |
Description: A contradiction implies anything. Deduction from pm2.21 607. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.21dd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21dd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 2 | pm2.21d 609 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 605 |
This theorem is referenced by: pm2.21fal 1363 pm2.21ddne 2419 ordtriexmidlem 4496 ordtri2or2exmidlem 4503 onsucelsucexmidlem 4506 wetriext 4554 reg3exmidlemwe 4556 nntr2 6471 nnm00 6497 phpm 6831 fidifsnen 6836 dif1enen 6846 infnfi 6861 en2eqpr 6873 aptiprleml 7580 aptiprlemu 7581 uzdisj 10028 nn0disj 10073 addmodlteq 10333 frec2uzlt2d 10339 iseqf1olemab 10424 iseqf1olemmo 10427 hashennnuni 10692 hashfiv01gt1 10695 xrmaxiflemab 11188 xrmaxiflemlub 11189 xrmaxltsup 11199 xrbdtri 11217 divalglemeunn 11858 divalglemeuneg 11860 zsupcllemex 11879 ennnfonelemk 12333 cnplimclemle 13277 efltlemlt 13335 trilpolemlt1 13920 neapmkvlem 13945 |
Copyright terms: Public domain | W3C validator |