| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21dd | GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
| pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21dd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21dd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | pm2.21d 620 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21fal 1392 pm2.21ddne 2458 ordtriexmidlem 4566 ordtri2or2exmidlem 4573 onsucelsucexmidlem 4576 wetriext 4624 reg3exmidlemwe 4626 nntr2 6588 nnm00 6615 phpm 6961 fidifsnen 6966 dif1enen 6976 infnfi 6991 en2eqpr 7003 aptiprleml 7751 aptiprlemu 7752 uzdisj 10214 nn0disj 10259 zsupcllemex 10371 addmodlteq 10541 frec2uzlt2d 10547 iseqf1olemab 10645 iseqf1olemmo 10648 hashennnuni 10922 hashfiv01gt1 10925 xrmaxiflemab 11500 xrmaxiflemlub 11501 xrmaxltsup 11511 xrbdtri 11529 divalglemeunn 12174 divalglemeuneg 12176 ennnfonelemk 12713 cnplimclemle 15082 efltlemlt 15188 trilpolemlt1 15913 neapmkvlem 15939 |
| Copyright terms: Public domain | W3C validator |