| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21dd | GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
| pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21dd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21dd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | pm2.21d 620 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21fal 1393 pm2.21ddne 2460 ordtriexmidlem 4575 ordtri2or2exmidlem 4582 onsucelsucexmidlem 4585 wetriext 4633 reg3exmidlemwe 4635 nntr2 6602 nnm00 6629 phpm 6977 fidifsnen 6982 dif1enen 6992 infnfi 7007 en2eqpr 7019 aptiprleml 7772 aptiprlemu 7773 uzdisj 10235 nn0disj 10280 zsupcllemex 10395 addmodlteq 10565 frec2uzlt2d 10571 iseqf1olemab 10669 iseqf1olemmo 10672 hashennnuni 10946 hashfiv01gt1 10949 xrmaxiflemab 11633 xrmaxiflemlub 11634 xrmaxltsup 11644 xrbdtri 11662 divalglemeunn 12307 divalglemeuneg 12309 ennnfonelemk 12846 cnplimclemle 15215 efltlemlt 15321 trilpolemlt1 16121 neapmkvlem 16147 |
| Copyright terms: Public domain | W3C validator |