| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21dd | GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
| pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21dd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21dd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | pm2.21d 620 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21fal 1384 pm2.21ddne 2450 ordtriexmidlem 4556 ordtri2or2exmidlem 4563 onsucelsucexmidlem 4566 wetriext 4614 reg3exmidlemwe 4616 nntr2 6570 nnm00 6597 phpm 6935 fidifsnen 6940 dif1enen 6950 infnfi 6965 en2eqpr 6977 aptiprleml 7723 aptiprlemu 7724 uzdisj 10185 nn0disj 10230 zsupcllemex 10337 addmodlteq 10507 frec2uzlt2d 10513 iseqf1olemab 10611 iseqf1olemmo 10614 hashennnuni 10888 hashfiv01gt1 10891 xrmaxiflemab 11429 xrmaxiflemlub 11430 xrmaxltsup 11440 xrbdtri 11458 divalglemeunn 12103 divalglemeuneg 12105 ennnfonelemk 12642 cnplimclemle 14988 efltlemlt 15094 trilpolemlt1 15772 neapmkvlem 15798 |
| Copyright terms: Public domain | W3C validator |