![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21dd | GIF version |
Description: A contradiction implies anything. Deduction from pm2.21 617. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.21dd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21dd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 2 | pm2.21d 619 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 615 |
This theorem is referenced by: pm2.21fal 1373 pm2.21ddne 2430 ordtriexmidlem 4519 ordtri2or2exmidlem 4526 onsucelsucexmidlem 4529 wetriext 4577 reg3exmidlemwe 4579 nntr2 6504 nnm00 6531 phpm 6865 fidifsnen 6870 dif1enen 6880 infnfi 6895 en2eqpr 6907 aptiprleml 7638 aptiprlemu 7639 uzdisj 10093 nn0disj 10138 addmodlteq 10398 frec2uzlt2d 10404 iseqf1olemab 10489 iseqf1olemmo 10492 hashennnuni 10759 hashfiv01gt1 10762 xrmaxiflemab 11255 xrmaxiflemlub 11256 xrmaxltsup 11266 xrbdtri 11284 divalglemeunn 11926 divalglemeuneg 11928 zsupcllemex 11947 ennnfonelemk 12401 cnplimclemle 14140 efltlemlt 14198 trilpolemlt1 14792 neapmkvlem 14817 |
Copyright terms: Public domain | W3C validator |