| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21dd | GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
| pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21dd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21dd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | pm2.21d 620 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21fal 1392 pm2.21ddne 2458 ordtriexmidlem 4565 ordtri2or2exmidlem 4572 onsucelsucexmidlem 4575 wetriext 4623 reg3exmidlemwe 4625 nntr2 6579 nnm00 6606 phpm 6944 fidifsnen 6949 dif1enen 6959 infnfi 6974 en2eqpr 6986 aptiprleml 7734 aptiprlemu 7735 uzdisj 10197 nn0disj 10242 zsupcllemex 10354 addmodlteq 10524 frec2uzlt2d 10530 iseqf1olemab 10628 iseqf1olemmo 10631 hashennnuni 10905 hashfiv01gt1 10908 xrmaxiflemab 11477 xrmaxiflemlub 11478 xrmaxltsup 11488 xrbdtri 11506 divalglemeunn 12151 divalglemeuneg 12153 ennnfonelemk 12690 cnplimclemle 15058 efltlemlt 15164 trilpolemlt1 15844 neapmkvlem 15870 |
| Copyright terms: Public domain | W3C validator |