| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21dd | GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21dd.1 | ⊢ (𝜑 → 𝜓) |
| pm2.21dd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21dd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21dd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm2.21dd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | pm2.21d 620 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21fal 1384 pm2.21ddne 2450 ordtriexmidlem 4556 ordtri2or2exmidlem 4563 onsucelsucexmidlem 4566 wetriext 4614 reg3exmidlemwe 4616 nntr2 6570 nnm00 6597 phpm 6935 fidifsnen 6940 dif1enen 6950 infnfi 6965 en2eqpr 6977 aptiprleml 7725 aptiprlemu 7726 uzdisj 10187 nn0disj 10232 zsupcllemex 10339 addmodlteq 10509 frec2uzlt2d 10515 iseqf1olemab 10613 iseqf1olemmo 10616 hashennnuni 10890 hashfiv01gt1 10893 xrmaxiflemab 11431 xrmaxiflemlub 11432 xrmaxltsup 11442 xrbdtri 11460 divalglemeunn 12105 divalglemeuneg 12107 ennnfonelemk 12644 cnplimclemle 15012 efltlemlt 15118 trilpolemlt1 15798 neapmkvlem 15824 |
| Copyright terms: Public domain | W3C validator |