![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > npnflt | GIF version |
Description: An extended real is less than plus infinity iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.) |
Ref | Expression |
---|---|
npnflt | ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltpnft 9816 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | |
2 | 1 | biimpd 144 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ → ¬ 𝐴 < +∞)) |
3 | 2 | necon2ad 2404 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ → 𝐴 ≠ +∞)) |
4 | ltpnf 9782 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
5 | 4 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 ∈ ℝ) → 𝐴 < +∞) |
6 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 = +∞) | |
7 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 ≠ +∞) | |
8 | 6, 7 | pm2.21ddne 2430 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 < +∞) |
9 | mnfltpnf 9787 | . . . . . 6 ⊢ -∞ < +∞ | |
10 | breq1 4008 | . . . . . 6 ⊢ (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞)) | |
11 | 9, 10 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 < +∞) |
12 | 11 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = -∞) → 𝐴 < +∞) |
13 | elxr 9778 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
14 | 13 | biimpi 120 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
15 | 14 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
16 | 5, 8, 12, 15 | mpjao3dan 1307 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → 𝐴 < +∞) |
17 | 16 | ex 115 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → 𝐴 < +∞)) |
18 | 3, 17 | impbid 129 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 class class class wbr 4005 ℝcr 7812 +∞cpnf 7991 -∞cmnf 7992 ℝ*cxr 7993 < clt 7994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-pre-ltirr 7925 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 |
This theorem is referenced by: xlt2add 9882 xrmaxadd 11271 |
Copyright terms: Public domain | W3C validator |