ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npnflt GIF version

Theorem npnflt 9751
Description: An extended real is less than plus infinity iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
Assertion
Ref Expression
npnflt (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))

Proof of Theorem npnflt
StepHypRef Expression
1 nltpnft 9750 . . . 4 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
21biimpd 143 . . 3 (𝐴 ∈ ℝ* → (𝐴 = +∞ → ¬ 𝐴 < +∞))
32necon2ad 2393 . 2 (𝐴 ∈ ℝ* → (𝐴 < +∞ → 𝐴 ≠ +∞))
4 ltpnf 9716 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
54adantl 275 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ 𝐴 ∈ ℝ) → 𝐴 < +∞)
6 simpr 109 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 = +∞)
7 simplr 520 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 ≠ +∞)
86, 7pm2.21ddne 2419 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 < +∞)
9 mnfltpnf 9721 . . . . . 6 -∞ < +∞
10 breq1 3985 . . . . . 6 (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞))
119, 10mpbiri 167 . . . . 5 (𝐴 = -∞ → 𝐴 < +∞)
1211adantl 275 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ 𝐴 = -∞) → 𝐴 < +∞)
13 elxr 9712 . . . . . 6 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1413biimpi 119 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1514adantr 274 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
165, 8, 12, 15mpjao3dan 1297 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 < +∞)
1716ex 114 . 2 (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → 𝐴 < +∞))
183, 17impbid 128 1 (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 967   = wceq 1343  wcel 2136  wne 2336   class class class wbr 3982  cr 7752  +∞cpnf 7930  -∞cmnf 7931  *cxr 7932   < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938
This theorem is referenced by:  xlt2add  9816  xrmaxadd  11202
  Copyright terms: Public domain W3C validator