![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > npnflt | GIF version |
Description: An extended real is less than plus infinity iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.) |
Ref | Expression |
---|---|
npnflt | ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltpnft 9883 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | |
2 | 1 | biimpd 144 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ → ¬ 𝐴 < +∞)) |
3 | 2 | necon2ad 2421 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ → 𝐴 ≠ +∞)) |
4 | ltpnf 9849 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
5 | 4 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 ∈ ℝ) → 𝐴 < +∞) |
6 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 = +∞) | |
7 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 ≠ +∞) | |
8 | 6, 7 | pm2.21ddne 2447 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 < +∞) |
9 | mnfltpnf 9854 | . . . . . 6 ⊢ -∞ < +∞ | |
10 | breq1 4033 | . . . . . 6 ⊢ (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞)) | |
11 | 9, 10 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 < +∞) |
12 | 11 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = -∞) → 𝐴 < +∞) |
13 | elxr 9845 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
14 | 13 | biimpi 120 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
15 | 14 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
16 | 5, 8, 12, 15 | mpjao3dan 1318 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → 𝐴 < +∞) |
17 | 16 | ex 115 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → 𝐴 < +∞)) |
18 | 3, 17 | impbid 129 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 class class class wbr 4030 ℝcr 7873 +∞cpnf 8053 -∞cmnf 8054 ℝ*cxr 8055 < clt 8056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 |
This theorem is referenced by: xlt2add 9949 xrmaxadd 11407 |
Copyright terms: Public domain | W3C validator |