Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > npnflt | GIF version |
Description: An extended real is less than plus infinity iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.) |
Ref | Expression |
---|---|
npnflt | ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltpnft 9783 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | |
2 | 1 | biimpd 144 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ → ¬ 𝐴 < +∞)) |
3 | 2 | necon2ad 2402 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ → 𝐴 ≠ +∞)) |
4 | ltpnf 9749 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
5 | 4 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 ∈ ℝ) → 𝐴 < +∞) |
6 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 = +∞) | |
7 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 ≠ +∞) | |
8 | 6, 7 | pm2.21ddne 2428 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = +∞) → 𝐴 < +∞) |
9 | mnfltpnf 9754 | . . . . . 6 ⊢ -∞ < +∞ | |
10 | breq1 4001 | . . . . . 6 ⊢ (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞)) | |
11 | 9, 10 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 < +∞) |
12 | 11 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ 𝐴 = -∞) → 𝐴 < +∞) |
13 | elxr 9745 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
14 | 13 | biimpi 120 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
15 | 14 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
16 | 5, 8, 12, 15 | mpjao3dan 1307 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → 𝐴 < +∞) |
17 | 16 | ex 115 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → 𝐴 < +∞)) |
18 | 3, 17 | impbid 129 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 977 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 class class class wbr 3998 ℝcr 7785 +∞cpnf 7963 -∞cmnf 7964 ℝ*cxr 7965 < clt 7966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltirr 7898 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 |
This theorem is referenced by: xlt2add 9849 xrmaxadd 11235 |
Copyright terms: Public domain | W3C validator |