| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necom | GIF version | ||
| Description: Commutation of inequality. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| necom | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2198 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3bii 2405 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: necomi 2452 necomd 2453 difprsn1 3762 difprsn2 3763 diftpsn3 3764 fndmdifcom 5669 fvpr1 5767 fvpr2 5768 fvpr1g 5769 fvtp1g 5771 fvtp2g 5772 fvtp3g 5773 fvtp2 5775 fvtp3 5776 netap 7323 2omotaplemap 7326 zltlen 9406 nn0lt2 9409 qltlen 9716 fzofzim 10266 flqeqceilz 10412 isprm2lem 12294 prm2orodd 12304 tridceq 15710 |
| Copyright terms: Public domain | W3C validator |