![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necom | GIF version |
Description: Commutation of inequality. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
necom | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2191 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
2 | 1 | necon3bii 2398 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ≠ wne 2360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-cleq 2182 df-ne 2361 |
This theorem is referenced by: necomi 2445 necomd 2446 difprsn1 3746 difprsn2 3747 diftpsn3 3748 fndmdifcom 5638 fvpr1 5736 fvpr2 5737 fvpr1g 5738 fvtp1g 5740 fvtp2g 5741 fvtp3g 5742 fvtp2 5744 fvtp3 5745 netap 7271 2omotaplemap 7274 zltlen 9349 nn0lt2 9352 qltlen 9658 fzofzim 10206 flqeqceilz 10336 isprm2lem 12134 prm2orodd 12144 tridceq 15189 |
Copyright terms: Public domain | W3C validator |