| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necom | GIF version | ||
| Description: Commutation of inequality. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| necom | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2208 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3bii 2415 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-ne 2378 |
| This theorem is referenced by: necomi 2462 necomd 2463 difprsn1 3777 difprsn2 3778 diftpsn3 3779 fndmdifcom 5698 fvpr1 5800 fvpr2 5801 fvpr1g 5802 fvtp1g 5804 fvtp2g 5805 fvtp3g 5806 fvtp2 5808 fvtp3 5809 netap 7381 2omotaplemap 7384 zltlen 9466 nn0lt2 9469 qltlen 9776 fzofzim 10329 flqeqceilz 10480 isprm2lem 12508 prm2orodd 12518 tridceq 16130 |
| Copyright terms: Public domain | W3C validator |