Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necom | GIF version |
Description: Commutation of inequality. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
necom | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2167 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
2 | 1 | necon3bii 2374 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-ne 2337 |
This theorem is referenced by: necomi 2421 necomd 2422 difprsn1 3712 difprsn2 3713 diftpsn3 3714 fndmdifcom 5591 fvpr1 5689 fvpr2 5690 fvpr1g 5691 fvtp1g 5693 fvtp2g 5694 fvtp3g 5695 fvtp2 5697 fvtp3 5698 zltlen 9269 nn0lt2 9272 qltlen 9578 fzofzim 10123 flqeqceilz 10253 isprm2lem 12048 prm2orodd 12058 tridceq 13935 |
Copyright terms: Public domain | W3C validator |