| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necom | GIF version | ||
| Description: Commutation of inequality. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| necom | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2231 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3bii 2438 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: necomi 2485 necomd 2486 difprsn1 3806 difprsn2 3807 diftpsn3 3808 fndmdifcom 5734 fvpr1 5836 fvpr2 5837 fvpr1g 5838 fvtp1g 5840 fvtp2g 5841 fvtp3g 5842 fvtp2 5844 fvtp3 5845 netap 7428 2omotaplemap 7431 zltlen 9513 nn0lt2 9516 qltlen 9823 fzofzim 10376 flqeqceilz 10527 isprm2lem 12624 prm2orodd 12634 tridceq 16355 |
| Copyright terms: Public domain | W3C validator |