| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necom | GIF version | ||
| Description: Commutation of inequality. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| necom | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2231 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3bii 2438 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: necomi 2485 necomd 2486 difprsn1 3807 difprsn2 3808 diftpsn3 3809 fndmdifcom 5743 fvpr1 5847 fvpr2 5848 fvpr1g 5849 fvtp1g 5851 fvtp2g 5852 fvtp3g 5853 fvtp2 5855 fvtp3 5856 netap 7448 2omotaplemap 7451 zltlen 9533 nn0lt2 9536 qltlen 9843 fzofzim 10396 flqeqceilz 10548 isprm2lem 12646 prm2orodd 12656 tridceq 16454 |
| Copyright terms: Public domain | W3C validator |