ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necom GIF version

Theorem necom 2431
Description: Commutation of inequality. (Contributed by NM, 14-May-1999.)
Assertion
Ref Expression
necom (𝐴𝐵𝐵𝐴)

Proof of Theorem necom
StepHypRef Expression
1 eqcom 2179 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
21necon3bii 2385 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-ne 2348
This theorem is referenced by:  necomi  2432  necomd  2433  difprsn1  3733  difprsn2  3734  diftpsn3  3735  fndmdifcom  5624  fvpr1  5722  fvpr2  5723  fvpr1g  5724  fvtp1g  5726  fvtp2g  5727  fvtp3g  5728  fvtp2  5730  fvtp3  5731  netap  7255  2omotaplemap  7258  zltlen  9333  nn0lt2  9336  qltlen  9642  fzofzim  10190  flqeqceilz  10320  isprm2lem  12118  prm2orodd  12128  tridceq  14889
  Copyright terms: Public domain W3C validator