| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necom | GIF version | ||
| Description: Commutation of inequality. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| necom | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2198 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3bii 2405 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: necomi 2452 necomd 2453 difprsn1 3762 difprsn2 3763 diftpsn3 3764 fndmdifcom 5671 fvpr1 5769 fvpr2 5770 fvpr1g 5771 fvtp1g 5773 fvtp2g 5774 fvtp3g 5775 fvtp2 5777 fvtp3 5778 netap 7337 2omotaplemap 7340 zltlen 9421 nn0lt2 9424 qltlen 9731 fzofzim 10281 flqeqceilz 10427 isprm2lem 12309 prm2orodd 12319 tridceq 15787 |
| Copyright terms: Public domain | W3C validator |