ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemex GIF version

Theorem divalglemex 11655
Description: Lemma for divalg 11657. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemex ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalglemex
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl1 985 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝑁 ∈ ℤ)
2 simpl2 986 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 ∈ ℤ)
32znegcld 9199 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → -𝐷 ∈ ℤ)
4 simpr 109 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 < 0)
52zred 9197 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 ∈ ℝ)
65lt0neg1d 8301 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → (𝐷 < 0 ↔ 0 < -𝐷))
74, 6mpbid 146 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 0 < -𝐷)
8 elnnz 9088 . . . . 5 (-𝐷 ∈ ℕ ↔ (-𝐷 ∈ ℤ ∧ 0 < -𝐷))
93, 7, 8sylanbrc 414 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → -𝐷 ∈ ℕ)
10 divalglemnn 11651 . . . 4 ((𝑁 ∈ ℤ ∧ -𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)))
111, 9, 10syl2anc 409 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → ∃𝑟 ∈ ℤ ∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)))
12 simplr 520 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑘 ∈ ℤ)
1312znegcld 9199 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → -𝑘 ∈ ℤ)
14 simpr1 988 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 0 ≤ 𝑟)
15 simpr2 989 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑟 < (abs‘-𝐷))
16 simpll2 1022 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) → 𝐷 ∈ ℤ)
1716ad2antrr 480 . . . . . . . . . 10 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝐷 ∈ ℤ)
1817zcnd 9198 . . . . . . . . 9 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝐷 ∈ ℂ)
1918absnegd 10993 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → (abs‘-𝐷) = (abs‘𝐷))
2015, 19breqtrd 3962 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑟 < (abs‘𝐷))
21 simpr3 990 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑁 = ((𝑘 · -𝐷) + 𝑟))
2212zcnd 9198 . . . . . . . . . 10 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑘 ∈ ℂ)
23 mulneg12 8183 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (-𝑘 · 𝐷) = (𝑘 · -𝐷))
2422, 18, 23syl2anc 409 . . . . . . . . 9 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → (-𝑘 · 𝐷) = (𝑘 · -𝐷))
2524oveq1d 5797 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → ((-𝑘 · 𝐷) + 𝑟) = ((𝑘 · -𝐷) + 𝑟))
2621, 25eqtr4d 2176 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑁 = ((-𝑘 · 𝐷) + 𝑟))
27 oveq1 5789 . . . . . . . . . . 11 (𝑞 = -𝑘 → (𝑞 · 𝐷) = (-𝑘 · 𝐷))
2827oveq1d 5797 . . . . . . . . . 10 (𝑞 = -𝑘 → ((𝑞 · 𝐷) + 𝑟) = ((-𝑘 · 𝐷) + 𝑟))
2928eqeq2d 2152 . . . . . . . . 9 (𝑞 = -𝑘 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((-𝑘 · 𝐷) + 𝑟)))
30293anbi3d 1297 . . . . . . . 8 (𝑞 = -𝑘 → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((-𝑘 · 𝐷) + 𝑟))))
3130rspcev 2793 . . . . . . 7 ((-𝑘 ∈ ℤ ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((-𝑘 · 𝐷) + 𝑟))) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3213, 14, 20, 26, 31syl13anc 1219 . . . . . 6 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3332ex 114 . . . . 5 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
3433rexlimdva 2552 . . . 4 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) → (∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
3534reximdva 2537 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → (∃𝑟 ∈ ℤ ∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
3611, 35mpd 13 . 2 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
37 simpr 109 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → 𝐷 = 0)
38 simpl3 987 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → 𝐷 ≠ 0)
3937, 38pm2.21ddne 2392 . 2 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
40 simpl1 985 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝑁 ∈ ℤ)
41 simpl2 986 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝐷 ∈ ℤ)
42 simpr 109 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 0 < 𝐷)
43 elnnz 9088 . . . 4 (𝐷 ∈ ℕ ↔ (𝐷 ∈ ℤ ∧ 0 < 𝐷))
4441, 42, 43sylanbrc 414 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝐷 ∈ ℕ)
45 divalglemnn 11651 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
4640, 44, 45syl2anc 409 . 2 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
47 ztri3or0 9120 . . 3 (𝐷 ∈ ℤ → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
48473ad2ant2 1004 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
4936, 39, 46, 48mpjao3dan 1286 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3o 962  w3a 963   = wceq 1332  wcel 1481  wne 2309  wrex 2418   class class class wbr 3937  cfv 5131  (class class class)co 5782  cc 7642  0cc0 7644   + caddc 7647   · cmul 7649   < clt 7824  cle 7825  -cneg 7958  cn 8744  cz 9078  abscabs 10801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  divalglemeuneg  11656
  Copyright terms: Public domain W3C validator