ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemex GIF version

Theorem divalglemex 12087
Description: Lemma for divalg 12089. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemex ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalglemex
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝑁 ∈ ℤ)
2 simpl2 1003 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 ∈ ℤ)
32znegcld 9450 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → -𝐷 ∈ ℤ)
4 simpr 110 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 < 0)
52zred 9448 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 ∈ ℝ)
65lt0neg1d 8542 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → (𝐷 < 0 ↔ 0 < -𝐷))
74, 6mpbid 147 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 0 < -𝐷)
8 elnnz 9336 . . . . 5 (-𝐷 ∈ ℕ ↔ (-𝐷 ∈ ℤ ∧ 0 < -𝐷))
93, 7, 8sylanbrc 417 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → -𝐷 ∈ ℕ)
10 divalglemnn 12083 . . . 4 ((𝑁 ∈ ℤ ∧ -𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)))
111, 9, 10syl2anc 411 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → ∃𝑟 ∈ ℤ ∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)))
12 simplr 528 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑘 ∈ ℤ)
1312znegcld 9450 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → -𝑘 ∈ ℤ)
14 simpr1 1005 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 0 ≤ 𝑟)
15 simpr2 1006 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑟 < (abs‘-𝐷))
16 simpll2 1039 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) → 𝐷 ∈ ℤ)
1716ad2antrr 488 . . . . . . . . . 10 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝐷 ∈ ℤ)
1817zcnd 9449 . . . . . . . . 9 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝐷 ∈ ℂ)
1918absnegd 11354 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → (abs‘-𝐷) = (abs‘𝐷))
2015, 19breqtrd 4059 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑟 < (abs‘𝐷))
21 simpr3 1007 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑁 = ((𝑘 · -𝐷) + 𝑟))
2212zcnd 9449 . . . . . . . . . 10 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑘 ∈ ℂ)
23 mulneg12 8423 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (-𝑘 · 𝐷) = (𝑘 · -𝐷))
2422, 18, 23syl2anc 411 . . . . . . . . 9 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → (-𝑘 · 𝐷) = (𝑘 · -𝐷))
2524oveq1d 5937 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → ((-𝑘 · 𝐷) + 𝑟) = ((𝑘 · -𝐷) + 𝑟))
2621, 25eqtr4d 2232 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑁 = ((-𝑘 · 𝐷) + 𝑟))
27 oveq1 5929 . . . . . . . . . . 11 (𝑞 = -𝑘 → (𝑞 · 𝐷) = (-𝑘 · 𝐷))
2827oveq1d 5937 . . . . . . . . . 10 (𝑞 = -𝑘 → ((𝑞 · 𝐷) + 𝑟) = ((-𝑘 · 𝐷) + 𝑟))
2928eqeq2d 2208 . . . . . . . . 9 (𝑞 = -𝑘 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((-𝑘 · 𝐷) + 𝑟)))
30293anbi3d 1329 . . . . . . . 8 (𝑞 = -𝑘 → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((-𝑘 · 𝐷) + 𝑟))))
3130rspcev 2868 . . . . . . 7 ((-𝑘 ∈ ℤ ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((-𝑘 · 𝐷) + 𝑟))) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3213, 14, 20, 26, 31syl13anc 1251 . . . . . 6 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3332ex 115 . . . . 5 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
3433rexlimdva 2614 . . . 4 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) → (∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
3534reximdva 2599 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → (∃𝑟 ∈ ℤ ∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
3611, 35mpd 13 . 2 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
37 simpr 110 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → 𝐷 = 0)
38 simpl3 1004 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → 𝐷 ≠ 0)
3937, 38pm2.21ddne 2450 . 2 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
40 simpl1 1002 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝑁 ∈ ℤ)
41 simpl2 1003 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝐷 ∈ ℤ)
42 simpr 110 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 0 < 𝐷)
43 elnnz 9336 . . . 4 (𝐷 ∈ ℕ ↔ (𝐷 ∈ ℤ ∧ 0 < 𝐷))
4441, 42, 43sylanbrc 417 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝐷 ∈ ℕ)
45 divalglemnn 12083 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
4640, 44, 45syl2anc 411 . 2 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
47 ztri3or0 9368 . . 3 (𝐷 ∈ ℤ → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
48473ad2ant2 1021 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
4936, 39, 46, 48mpjao3dan 1318 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 979  w3a 980   = wceq 1364  wcel 2167  wne 2367  wrex 2476   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  -cneg 8198  cn 8990  cz 9326  abscabs 11162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  divalglemeuneg  12088
  Copyright terms: Public domain W3C validator