| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1002 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝑁 ∈ ℤ) |
| 2 | | simpl2 1003 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 ∈ ℤ) |
| 3 | 2 | znegcld 9450 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → -𝐷 ∈ ℤ) |
| 4 | | simpr 110 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 < 0) |
| 5 | 2 | zred 9448 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 ∈ ℝ) |
| 6 | 5 | lt0neg1d 8542 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → (𝐷 < 0 ↔ 0 < -𝐷)) |
| 7 | 4, 6 | mpbid 147 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 0 < -𝐷) |
| 8 | | elnnz 9336 |
. . . . 5
⊢ (-𝐷 ∈ ℕ ↔ (-𝐷 ∈ ℤ ∧ 0 <
-𝐷)) |
| 9 | 3, 7, 8 | sylanbrc 417 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → -𝐷 ∈ ℕ) |
| 10 | | divalglemnn 12083 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ -𝐷 ∈ ℕ) →
∃𝑟 ∈ ℤ
∃𝑘 ∈ ℤ (0
≤ 𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) |
| 11 | 1, 9, 10 | syl2anc 411 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → ∃𝑟 ∈ ℤ ∃𝑘 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) |
| 12 | | simplr 528 |
. . . . . . . 8
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑘 ∈ ℤ) |
| 13 | 12 | znegcld 9450 |
. . . . . . 7
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → -𝑘 ∈ ℤ) |
| 14 | | simpr1 1005 |
. . . . . . 7
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 0 ≤ 𝑟) |
| 15 | | simpr2 1006 |
. . . . . . . 8
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑟 < (abs‘-𝐷)) |
| 16 | | simpll2 1039 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) → 𝐷 ∈ ℤ) |
| 17 | 16 | ad2antrr 488 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝐷 ∈ ℤ) |
| 18 | 17 | zcnd 9449 |
. . . . . . . . 9
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝐷 ∈ ℂ) |
| 19 | 18 | absnegd 11354 |
. . . . . . . 8
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → (abs‘-𝐷) = (abs‘𝐷)) |
| 20 | 15, 19 | breqtrd 4059 |
. . . . . . 7
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑟 < (abs‘𝐷)) |
| 21 | | simpr3 1007 |
. . . . . . . 8
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑁 = ((𝑘 · -𝐷) + 𝑟)) |
| 22 | 12 | zcnd 9449 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑘 ∈ ℂ) |
| 23 | | mulneg12 8423 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (-𝑘 · 𝐷) = (𝑘 · -𝐷)) |
| 24 | 22, 18, 23 | syl2anc 411 |
. . . . . . . . 9
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → (-𝑘 · 𝐷) = (𝑘 · -𝐷)) |
| 25 | 24 | oveq1d 5937 |
. . . . . . . 8
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → ((-𝑘 · 𝐷) + 𝑟) = ((𝑘 · -𝐷) + 𝑟)) |
| 26 | 21, 25 | eqtr4d 2232 |
. . . . . . 7
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑁 = ((-𝑘 · 𝐷) + 𝑟)) |
| 27 | | oveq1 5929 |
. . . . . . . . . . 11
⊢ (𝑞 = -𝑘 → (𝑞 · 𝐷) = (-𝑘 · 𝐷)) |
| 28 | 27 | oveq1d 5937 |
. . . . . . . . . 10
⊢ (𝑞 = -𝑘 → ((𝑞 · 𝐷) + 𝑟) = ((-𝑘 · 𝐷) + 𝑟)) |
| 29 | 28 | eqeq2d 2208 |
. . . . . . . . 9
⊢ (𝑞 = -𝑘 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((-𝑘 · 𝐷) + 𝑟))) |
| 30 | 29 | 3anbi3d 1329 |
. . . . . . . 8
⊢ (𝑞 = -𝑘 → ((0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((-𝑘 · 𝐷) + 𝑟)))) |
| 31 | 30 | rspcev 2868 |
. . . . . . 7
⊢ ((-𝑘 ∈ ℤ ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((-𝑘 · 𝐷) + 𝑟))) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |
| 32 | 13, 14, 20, 26, 31 | syl13anc 1251 |
. . . . . 6
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |
| 33 | 32 | ex 115 |
. . . . 5
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 ≠ 0)
∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((0 ≤
𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))) |
| 34 | 33 | rexlimdva 2614 |
. . . 4
⊢ ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) → (∃𝑘 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))) |
| 35 | 34 | reximdva 2599 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → (∃𝑟 ∈ ℤ ∃𝑘 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))) |
| 36 | 11, 35 | mpd 13 |
. 2
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |
| 37 | | simpr 110 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → 𝐷 = 0) |
| 38 | | simpl3 1004 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → 𝐷 ≠ 0) |
| 39 | 37, 38 | pm2.21ddne 2450 |
. 2
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |
| 40 | | simpl1 1002 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝑁 ∈ ℤ) |
| 41 | | simpl2 1003 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝐷 ∈ ℤ) |
| 42 | | simpr 110 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 0 < 𝐷) |
| 43 | | elnnz 9336 |
. . . 4
⊢ (𝐷 ∈ ℕ ↔ (𝐷 ∈ ℤ ∧ 0 <
𝐷)) |
| 44 | 41, 42, 43 | sylanbrc 417 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝐷 ∈ ℕ) |
| 45 | | divalglemnn 12083 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) →
∃𝑟 ∈ ℤ
∃𝑞 ∈ ℤ (0
≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |
| 46 | 40, 44, 45 | syl2anc 411 |
. 2
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |
| 47 | | ztri3or0 9368 |
. . 3
⊢ (𝐷 ∈ ℤ → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷)) |
| 48 | 47 | 3ad2ant2 1021 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷)) |
| 49 | 36, 39, 46, 48 | mpjao3dan 1318 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |