ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemex GIF version

Theorem divalglemex 10804
Description: Lemma for divalg 10806. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemex ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalglemex
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl1 944 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝑁 ∈ ℤ)
2 simpl2 945 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 ∈ ℤ)
32znegcld 8803 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → -𝐷 ∈ ℤ)
4 simpr 108 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 < 0)
52zred 8801 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 𝐷 ∈ ℝ)
65lt0neg1d 7934 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → (𝐷 < 0 ↔ 0 < -𝐷))
74, 6mpbid 145 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → 0 < -𝐷)
8 elnnz 8693 . . . . 5 (-𝐷 ∈ ℕ ↔ (-𝐷 ∈ ℤ ∧ 0 < -𝐷))
93, 7, 8sylanbrc 408 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → -𝐷 ∈ ℕ)
10 divalglemnn 10800 . . . 4 ((𝑁 ∈ ℤ ∧ -𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)))
111, 9, 10syl2anc 403 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → ∃𝑟 ∈ ℤ ∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)))
12 simplr 497 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑘 ∈ ℤ)
1312znegcld 8803 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → -𝑘 ∈ ℤ)
14 simpr1 947 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 0 ≤ 𝑟)
15 simpr2 948 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑟 < (abs‘-𝐷))
16 simpll2 981 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) → 𝐷 ∈ ℤ)
1716ad2antrr 472 . . . . . . . . . 10 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝐷 ∈ ℤ)
1817zcnd 8802 . . . . . . . . 9 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝐷 ∈ ℂ)
1918absnegd 10518 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → (abs‘-𝐷) = (abs‘𝐷))
2015, 19breqtrd 3844 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑟 < (abs‘𝐷))
21 simpr3 949 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑁 = ((𝑘 · -𝐷) + 𝑟))
2212zcnd 8802 . . . . . . . . . 10 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑘 ∈ ℂ)
23 mulneg12 7819 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (-𝑘 · 𝐷) = (𝑘 · -𝐷))
2422, 18, 23syl2anc 403 . . . . . . . . 9 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → (-𝑘 · 𝐷) = (𝑘 · -𝐷))
2524oveq1d 5628 . . . . . . . 8 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → ((-𝑘 · 𝐷) + 𝑟) = ((𝑘 · -𝐷) + 𝑟))
2621, 25eqtr4d 2120 . . . . . . 7 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → 𝑁 = ((-𝑘 · 𝐷) + 𝑟))
27 oveq1 5620 . . . . . . . . . . 11 (𝑞 = -𝑘 → (𝑞 · 𝐷) = (-𝑘 · 𝐷))
2827oveq1d 5628 . . . . . . . . . 10 (𝑞 = -𝑘 → ((𝑞 · 𝐷) + 𝑟) = ((-𝑘 · 𝐷) + 𝑟))
2928eqeq2d 2096 . . . . . . . . 9 (𝑞 = -𝑘 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((-𝑘 · 𝐷) + 𝑟)))
30293anbi3d 1252 . . . . . . . 8 (𝑞 = -𝑘 → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((-𝑘 · 𝐷) + 𝑟))))
3130rspcev 2715 . . . . . . 7 ((-𝑘 ∈ ℤ ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((-𝑘 · 𝐷) + 𝑟))) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3213, 14, 20, 26, 31syl13anc 1174 . . . . . 6 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟))) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3332ex 113 . . . . 5 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
3433rexlimdva 2485 . . . 4 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) ∧ 𝑟 ∈ ℤ) → (∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
3534reximdva 2471 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → (∃𝑟 ∈ ℤ ∃𝑘 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘-𝐷) ∧ 𝑁 = ((𝑘 · -𝐷) + 𝑟)) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
3611, 35mpd 13 . 2 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 < 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
37 simpr 108 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → 𝐷 = 0)
38 simpl3 946 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → 𝐷 ≠ 0)
3937, 38pm2.21ddne 2334 . 2 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 𝐷 = 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
40 simpl1 944 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝑁 ∈ ℤ)
41 simpl2 945 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝐷 ∈ ℤ)
42 simpr 108 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 0 < 𝐷)
43 elnnz 8693 . . . 4 (𝐷 ∈ ℕ ↔ (𝐷 ∈ ℤ ∧ 0 < 𝐷))
4441, 42, 43sylanbrc 408 . . 3 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → 𝐷 ∈ ℕ)
45 divalglemnn 10800 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
4640, 44, 45syl2anc 403 . 2 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) ∧ 0 < 𝐷) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
47 ztri3or0 8725 . . 3 (𝐷 ∈ ℤ → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
48473ad2ant2 963 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
4936, 39, 46, 48mpjao3dan 1241 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3o 921  w3a 922   = wceq 1287  wcel 1436  wne 2251  wrex 2356   class class class wbr 3820  cfv 4981  (class class class)co 5613  cc 7292  0cc0 7294   + caddc 7297   · cmul 7299   < clt 7466  cle 7467  -cneg 7598  cn 8357  cz 8683  abscabs 10326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407  ax-arch 7408
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-2 8416  df-n0 8607  df-z 8684  df-uz 8952  df-q 9037  df-rp 9067  df-fl 9605  df-mod 9658  df-iseq 9780  df-iexp 9854  df-cj 10172  df-re 10173  df-im 10174  df-rsqrt 10327  df-abs 10328
This theorem is referenced by:  divalglemeuneg  10805
  Copyright terms: Public domain W3C validator