| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znege1 | GIF version | ||
| Description: The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.) |
| Ref | Expression |
|---|---|
| znege1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zltp1le 9397 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | |
| 2 | 1 | 3adant3 1019 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) |
| 3 | 2 | biimpa 296 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → (𝐴 + 1) ≤ 𝐵) |
| 4 | simpl1 1002 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℤ) | |
| 5 | 4 | zred 9465 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
| 6 | 1red 8058 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ) | |
| 7 | simpl2 1003 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ) | |
| 8 | 7 | zred 9465 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
| 9 | 5, 6, 8 | leaddsub2d 8591 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → ((𝐴 + 1) ≤ 𝐵 ↔ 1 ≤ (𝐵 − 𝐴))) |
| 10 | 3, 9 | mpbid 147 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 1 ≤ (𝐵 − 𝐴)) |
| 11 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 12 | 5, 8, 11 | ltled 8162 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
| 13 | 5, 8, 12 | abssuble0d 11359 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) |
| 14 | 10, 13 | breqtrrd 4062 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
| 15 | simpr 110 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 16 | simpl3 1004 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) | |
| 17 | 15, 16 | pm2.21ddne 2450 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
| 18 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
| 19 | simpl2 1003 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℤ) | |
| 20 | simpl1 1002 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℤ) | |
| 21 | zltp1le 9397 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) | |
| 22 | 19, 20, 21 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) |
| 23 | 18, 22 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → (𝐵 + 1) ≤ 𝐴) |
| 24 | 19 | zred 9465 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ) |
| 25 | 1red 8058 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 1 ∈ ℝ) | |
| 26 | 20 | zred 9465 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ) |
| 27 | 24, 25, 26 | leaddsub2d 8591 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → ((𝐵 + 1) ≤ 𝐴 ↔ 1 ≤ (𝐴 − 𝐵))) |
| 28 | 23, 27 | mpbid 147 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 1 ≤ (𝐴 − 𝐵)) |
| 29 | 24, 26, 18 | ltled 8162 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 ≤ 𝐴) |
| 30 | 24, 26, 29 | abssubge0d 11358 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → (abs‘(𝐴 − 𝐵)) = (𝐴 − 𝐵)) |
| 31 | 28, 30 | breqtrrd 4062 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
| 32 | ztri3or 9386 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
| 33 | 32 | 3adant3 1019 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
| 34 | 14, 17, 31, 33 | mpjao3dan 1318 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 979 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 1c1 7897 + caddc 7899 < clt 8078 ≤ cle 8079 − cmin 8214 ℤcz 9343 abscabs 11179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |