Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > znege1 | GIF version |
Description: The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.) |
Ref | Expression |
---|---|
znege1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltp1le 9245 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | |
2 | 1 | 3adant3 1007 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) |
3 | 2 | biimpa 294 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → (𝐴 + 1) ≤ 𝐵) |
4 | simpl1 990 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℤ) | |
5 | 4 | zred 9313 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
6 | 1red 7914 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ) | |
7 | simpl2 991 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ) | |
8 | 7 | zred 9313 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
9 | 5, 6, 8 | leaddsub2d 8445 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → ((𝐴 + 1) ≤ 𝐵 ↔ 1 ≤ (𝐵 − 𝐴))) |
10 | 3, 9 | mpbid 146 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 1 ≤ (𝐵 − 𝐴)) |
11 | simpr 109 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
12 | 5, 8, 11 | ltled 8017 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
13 | 5, 8, 12 | abssuble0d 11119 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) |
14 | 10, 13 | breqtrrd 4010 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
15 | simpr 109 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
16 | simpl3 992 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) | |
17 | 15, 16 | pm2.21ddne 2419 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
18 | simpr 109 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
19 | simpl2 991 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℤ) | |
20 | simpl1 990 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℤ) | |
21 | zltp1le 9245 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) | |
22 | 19, 20, 21 | syl2anc 409 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) |
23 | 18, 22 | mpbid 146 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → (𝐵 + 1) ≤ 𝐴) |
24 | 19 | zred 9313 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ) |
25 | 1red 7914 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 1 ∈ ℝ) | |
26 | 20 | zred 9313 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ) |
27 | 24, 25, 26 | leaddsub2d 8445 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → ((𝐵 + 1) ≤ 𝐴 ↔ 1 ≤ (𝐴 − 𝐵))) |
28 | 23, 27 | mpbid 146 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 1 ≤ (𝐴 − 𝐵)) |
29 | 24, 26, 18 | ltled 8017 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 ≤ 𝐴) |
30 | 24, 26, 29 | abssubge0d 11118 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → (abs‘(𝐴 − 𝐵)) = (𝐴 − 𝐵)) |
31 | 28, 30 | breqtrrd 4010 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
32 | ztri3or 9234 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
33 | 32 | 3adant3 1007 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
34 | 14, 17, 31, 33 | mpjao3dan 1297 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ w3o 967 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 1c1 7754 + caddc 7756 < clt 7933 ≤ cle 7934 − cmin 8069 ℤcz 9191 abscabs 10939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |