![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > znege1 | GIF version |
Description: The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.) |
Ref | Expression |
---|---|
znege1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltp1le 9278 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | |
2 | 1 | 3adant3 1017 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) |
3 | 2 | biimpa 296 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → (𝐴 + 1) ≤ 𝐵) |
4 | simpl1 1000 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℤ) | |
5 | 4 | zred 9346 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
6 | 1red 7947 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ) | |
7 | simpl2 1001 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ) | |
8 | 7 | zred 9346 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
9 | 5, 6, 8 | leaddsub2d 8478 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → ((𝐴 + 1) ≤ 𝐵 ↔ 1 ≤ (𝐵 − 𝐴))) |
10 | 3, 9 | mpbid 147 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 1 ≤ (𝐵 − 𝐴)) |
11 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
12 | 5, 8, 11 | ltled 8050 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
13 | 5, 8, 12 | abssuble0d 11152 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) |
14 | 10, 13 | breqtrrd 4026 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 < 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
15 | simpr 110 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
16 | simpl3 1002 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) | |
17 | 15, 16 | pm2.21ddne 2428 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
18 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
19 | simpl2 1001 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℤ) | |
20 | simpl1 1000 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℤ) | |
21 | zltp1le 9278 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) | |
22 | 19, 20, 21 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) |
23 | 18, 22 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → (𝐵 + 1) ≤ 𝐴) |
24 | 19 | zred 9346 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ) |
25 | 1red 7947 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 1 ∈ ℝ) | |
26 | 20 | zred 9346 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ) |
27 | 24, 25, 26 | leaddsub2d 8478 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → ((𝐵 + 1) ≤ 𝐴 ↔ 1 ≤ (𝐴 − 𝐵))) |
28 | 23, 27 | mpbid 147 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 1 ≤ (𝐴 − 𝐵)) |
29 | 24, 26, 18 | ltled 8050 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 ≤ 𝐴) |
30 | 24, 26, 29 | abssubge0d 11151 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → (abs‘(𝐴 − 𝐵)) = (𝐴 − 𝐵)) |
31 | 28, 30 | breqtrrd 4026 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 < 𝐴) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
32 | ztri3or 9267 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
33 | 32 | 3adant3 1017 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) |
34 | 14, 17, 31, 33 | mpjao3dan 1307 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 977 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 class class class wbr 3998 ‘cfv 5208 (class class class)co 5865 1c1 7787 + caddc 7789 < clt 7966 ≤ cle 7967 − cmin 8102 ℤcz 9224 abscabs 10972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-n0 9148 df-z 9225 df-uz 9500 df-seqfrec 10414 df-exp 10488 df-cj 10817 df-re 10818 df-im 10819 df-rsqrt 10973 df-abs 10974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |