ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmnfgt GIF version

Theorem nmnfgt 9854
Description: An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
Assertion
Ref Expression
nmnfgt (𝐴 ∈ ℝ* → (-∞ < 𝐴𝐴 ≠ -∞))

Proof of Theorem nmnfgt
StepHypRef Expression
1 ngtmnft 9853 . . . 4 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
21biimpd 144 . . 3 (𝐴 ∈ ℝ* → (𝐴 = -∞ → ¬ -∞ < 𝐴))
32necon2ad 2417 . 2 (𝐴 ∈ ℝ* → (-∞ < 𝐴𝐴 ≠ -∞))
4 mnflt 9819 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
54adantl 277 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ 𝐴 ∈ ℝ) → -∞ < 𝐴)
6 mnfltpnf 9821 . . . . . 6 -∞ < +∞
7 breq2 4025 . . . . . 6 (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞))
86, 7mpbiri 168 . . . . 5 (𝐴 = +∞ → -∞ < 𝐴)
98adantl 277 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ 𝐴 = +∞) → -∞ < 𝐴)
10 simpr 110 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ 𝐴 = -∞) → 𝐴 = -∞)
11 simplr 528 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ 𝐴 = -∞) → 𝐴 ≠ -∞)
1210, 11pm2.21ddne 2443 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ 𝐴 = -∞) → -∞ < 𝐴)
13 elxr 9812 . . . . . 6 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1413biimpi 120 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1514adantr 276 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
165, 9, 12, 15mpjao3dan 1318 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → -∞ < 𝐴)
1716ex 115 . 2 (𝐴 ∈ ℝ* → (𝐴 ≠ -∞ → -∞ < 𝐴))
183, 17impbid 129 1 (𝐴 ∈ ℝ* → (-∞ < 𝐴𝐴 ≠ -∞))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 979   = wceq 1364  wcel 2160  wne 2360   class class class wbr 4021  cr 7845  +∞cpnf 8024  -∞cmnf 8025  *cxr 8026   < clt 8027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-pre-ltirr 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-xp 4653  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032
This theorem is referenced by:  xlt2add  9916  xrmaxadd  11310  xblpnfps  14383  xblpnf  14384
  Copyright terms: Public domain W3C validator