| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nmnfgt | GIF version | ||
| Description: An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.) |
| Ref | Expression |
|---|---|
| nmnfgt | ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ↔ 𝐴 ≠ -∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngtmnft 10013 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | |
| 2 | 1 | biimpd 144 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ → ¬ -∞ < 𝐴)) |
| 3 | 2 | necon2ad 2457 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 → 𝐴 ≠ -∞)) |
| 4 | mnflt 9979 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 5 | 4 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 ∈ ℝ) → -∞ < 𝐴) |
| 6 | mnfltpnf 9981 | . . . . . 6 ⊢ -∞ < +∞ | |
| 7 | breq2 4087 | . . . . . 6 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
| 8 | 6, 7 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
| 9 | 8 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = +∞) → -∞ < 𝐴) |
| 10 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = -∞) → 𝐴 = -∞) | |
| 11 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = -∞) → 𝐴 ≠ -∞) | |
| 12 | 10, 11 | pm2.21ddne 2483 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = -∞) → -∞ < 𝐴) |
| 13 | elxr 9972 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 14 | 13 | biimpi 120 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 15 | 14 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 16 | 5, 9, 12, 15 | mpjao3dan 1341 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → -∞ < 𝐴) |
| 17 | 16 | ex 115 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≠ -∞ → -∞ < 𝐴)) |
| 18 | 3, 17 | impbid 129 | 1 ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ↔ 𝐴 ≠ -∞)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 class class class wbr 4083 ℝcr 7998 +∞cpnf 8178 -∞cmnf 8179 ℝ*cxr 8180 < clt 8181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 |
| This theorem is referenced by: xlt2add 10076 xrmaxadd 11772 xblpnfps 15072 xblpnf 15073 |
| Copyright terms: Public domain | W3C validator |