Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nmnfgt | GIF version |
Description: An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.) |
Ref | Expression |
---|---|
nmnfgt | ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ↔ 𝐴 ≠ -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngtmnft 9774 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | |
2 | 1 | biimpd 143 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ → ¬ -∞ < 𝐴)) |
3 | 2 | necon2ad 2397 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 → 𝐴 ≠ -∞)) |
4 | mnflt 9740 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
5 | 4 | adantl 275 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 ∈ ℝ) → -∞ < 𝐴) |
6 | mnfltpnf 9742 | . . . . . 6 ⊢ -∞ < +∞ | |
7 | breq2 3993 | . . . . . 6 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
8 | 6, 7 | mpbiri 167 | . . . . 5 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
9 | 8 | adantl 275 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = +∞) → -∞ < 𝐴) |
10 | simpr 109 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = -∞) → 𝐴 = -∞) | |
11 | simplr 525 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = -∞) → 𝐴 ≠ -∞) | |
12 | 10, 11 | pm2.21ddne 2423 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = -∞) → -∞ < 𝐴) |
13 | elxr 9733 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
14 | 13 | biimpi 119 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
15 | 14 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
16 | 5, 9, 12, 15 | mpjao3dan 1302 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → -∞ < 𝐴) |
17 | 16 | ex 114 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≠ -∞ → -∞ < 𝐴)) |
18 | 3, 17 | impbid 128 | 1 ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ↔ 𝐴 ≠ -∞)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ w3o 972 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 class class class wbr 3989 ℝcr 7773 +∞cpnf 7951 -∞cmnf 7952 ℝ*cxr 7953 < clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 |
This theorem is referenced by: xlt2add 9837 xrmaxadd 11224 xblpnfps 13192 xblpnf 13193 |
Copyright terms: Public domain | W3C validator |