| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nmnfgt | GIF version | ||
| Description: An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.) |
| Ref | Expression |
|---|---|
| nmnfgt | ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ↔ 𝐴 ≠ -∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngtmnft 9909 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | |
| 2 | 1 | biimpd 144 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ → ¬ -∞ < 𝐴)) |
| 3 | 2 | necon2ad 2424 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 → 𝐴 ≠ -∞)) |
| 4 | mnflt 9875 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 5 | 4 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 ∈ ℝ) → -∞ < 𝐴) |
| 6 | mnfltpnf 9877 | . . . . . 6 ⊢ -∞ < +∞ | |
| 7 | breq2 4038 | . . . . . 6 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
| 8 | 6, 7 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
| 9 | 8 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = +∞) → -∞ < 𝐴) |
| 10 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = -∞) → 𝐴 = -∞) | |
| 11 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = -∞) → 𝐴 ≠ -∞) | |
| 12 | 10, 11 | pm2.21ddne 2450 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ 𝐴 = -∞) → -∞ < 𝐴) |
| 13 | elxr 9868 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 14 | 13 | biimpi 120 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 15 | 14 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
| 16 | 5, 9, 12, 15 | mpjao3dan 1318 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → -∞ < 𝐴) |
| 17 | 16 | ex 115 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≠ -∞ → -∞ < 𝐴)) |
| 18 | 3, 17 | impbid 129 | 1 ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ↔ 𝐴 ≠ -∞)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4034 ℝcr 7895 +∞cpnf 8075 -∞cmnf 8076 ℝ*cxr 8077 < clt 8078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 |
| This theorem is referenced by: xlt2add 9972 xrmaxadd 11443 xblpnfps 14718 xblpnf 14719 |
| Copyright terms: Public domain | W3C validator |