ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmnfgt GIF version

Theorem nmnfgt 9940
Description: An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
Assertion
Ref Expression
nmnfgt (𝐴 ∈ ℝ* → (-∞ < 𝐴𝐴 ≠ -∞))

Proof of Theorem nmnfgt
StepHypRef Expression
1 ngtmnft 9939 . . . 4 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
21biimpd 144 . . 3 (𝐴 ∈ ℝ* → (𝐴 = -∞ → ¬ -∞ < 𝐴))
32necon2ad 2433 . 2 (𝐴 ∈ ℝ* → (-∞ < 𝐴𝐴 ≠ -∞))
4 mnflt 9905 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
54adantl 277 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ 𝐴 ∈ ℝ) → -∞ < 𝐴)
6 mnfltpnf 9907 . . . . . 6 -∞ < +∞
7 breq2 4048 . . . . . 6 (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞))
86, 7mpbiri 168 . . . . 5 (𝐴 = +∞ → -∞ < 𝐴)
98adantl 277 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ 𝐴 = +∞) → -∞ < 𝐴)
10 simpr 110 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ 𝐴 = -∞) → 𝐴 = -∞)
11 simplr 528 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ 𝐴 = -∞) → 𝐴 ≠ -∞)
1210, 11pm2.21ddne 2459 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ 𝐴 = -∞) → -∞ < 𝐴)
13 elxr 9898 . . . . . 6 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1413biimpi 120 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1514adantr 276 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
165, 9, 12, 15mpjao3dan 1320 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → -∞ < 𝐴)
1716ex 115 . 2 (𝐴 ∈ ℝ* → (𝐴 ≠ -∞ → -∞ < 𝐴))
183, 17impbid 129 1 (𝐴 ∈ ℝ* → (-∞ < 𝐴𝐴 ≠ -∞))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 980   = wceq 1373  wcel 2176  wne 2376   class class class wbr 4044  cr 7924  +∞cpnf 8104  -∞cmnf 8105  *cxr 8106   < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltirr 8037
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112
This theorem is referenced by:  xlt2add  10002  xrmaxadd  11572  xblpnfps  14870  xblpnf  14871
  Copyright terms: Public domain W3C validator