ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmss GIF version

Theorem lmss 14762
Description: Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Hypotheses
Ref Expression
lmss.1 𝐾 = (𝐽t 𝑌)
lmss.2 𝑍 = (ℤ𝑀)
lmss.3 (𝜑𝑌𝑉)
lmss.4 (𝜑𝐽 ∈ Top)
lmss.5 (𝜑𝑃𝑌)
lmss.6 (𝜑𝑀 ∈ ℤ)
lmss.7 (𝜑𝐹:𝑍𝑌)
Assertion
Ref Expression
lmss (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃))

Proof of Theorem lmss
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmss.4 . . . . . 6 (𝜑𝐽 ∈ Top)
2 eqid 2206 . . . . . . 7 𝐽 = 𝐽
32toptopon 14534 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
41, 3sylib 122 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
5 lmcl 14761 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃 𝐽)
64, 5sylan 283 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → 𝑃 𝐽)
7 lmfss 14760 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝐽))
84, 7sylan 283 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝐽))
9 rnss 4913 . . . . . 6 (𝐹 ⊆ (ℂ × 𝐽) → ran 𝐹 ⊆ ran (ℂ × 𝐽))
108, 9syl 14 . . . . 5 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → ran 𝐹 ⊆ ran (ℂ × 𝐽))
11 rnxpss 5119 . . . . 5 ran (ℂ × 𝐽) ⊆ 𝐽
1210, 11sstrdi 3206 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → ran 𝐹 𝐽)
136, 12jca 306 . . 3 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → (𝑃 𝐽 ∧ ran 𝐹 𝐽))
1413ex 115 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 → (𝑃 𝐽 ∧ ran 𝐹 𝐽)))
15 inss2 3395 . . . . 5 (𝑌 𝐽) ⊆ 𝐽
16 lmss.1 . . . . . . 7 𝐾 = (𝐽t 𝑌)
17 lmss.3 . . . . . . . 8 (𝜑𝑌𝑉)
18 resttopon2 14694 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑌𝑉) → (𝐽t 𝑌) ∈ (TopOn‘(𝑌 𝐽)))
194, 17, 18syl2anc 411 . . . . . . 7 (𝜑 → (𝐽t 𝑌) ∈ (TopOn‘(𝑌 𝐽)))
2016, 19eqeltrid 2293 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(𝑌 𝐽)))
21 lmcl 14761 . . . . . 6 ((𝐾 ∈ (TopOn‘(𝑌 𝐽)) ∧ 𝐹(⇝𝑡𝐾)𝑃) → 𝑃 ∈ (𝑌 𝐽))
2220, 21sylan 283 . . . . 5 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → 𝑃 ∈ (𝑌 𝐽))
2315, 22sselid 3192 . . . 4 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → 𝑃 𝐽)
24 lmfss 14760 . . . . . . . 8 ((𝐾 ∈ (TopOn‘(𝑌 𝐽)) ∧ 𝐹(⇝𝑡𝐾)𝑃) → 𝐹 ⊆ (ℂ × (𝑌 𝐽)))
2520, 24sylan 283 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → 𝐹 ⊆ (ℂ × (𝑌 𝐽)))
26 rnss 4913 . . . . . . 7 (𝐹 ⊆ (ℂ × (𝑌 𝐽)) → ran 𝐹 ⊆ ran (ℂ × (𝑌 𝐽)))
2725, 26syl 14 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → ran 𝐹 ⊆ ran (ℂ × (𝑌 𝐽)))
28 rnxpss 5119 . . . . . 6 ran (ℂ × (𝑌 𝐽)) ⊆ (𝑌 𝐽)
2927, 28sstrdi 3206 . . . . 5 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → ran 𝐹 ⊆ (𝑌 𝐽))
3029, 15sstrdi 3206 . . . 4 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → ran 𝐹 𝐽)
3123, 30jca 306 . . 3 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → (𝑃 𝐽 ∧ ran 𝐹 𝐽))
3231ex 115 . 2 (𝜑 → (𝐹(⇝𝑡𝐾)𝑃 → (𝑃 𝐽 ∧ ran 𝐹 𝐽)))
33 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑃 𝐽)
34 lmss.5 . . . . . . . 8 (𝜑𝑃𝑌)
3534adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑃𝑌)
3635, 33elind 3359 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑃 ∈ (𝑌 𝐽))
3733, 362thd 175 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑃 𝐽𝑃 ∈ (𝑌 𝐽)))
3816eleq2i 2273 . . . . . . . . 9 (𝑣𝐾𝑣 ∈ (𝐽t 𝑌))
391adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐽 ∈ Top)
4017adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑌𝑉)
41 elrest 13122 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑌𝑉) → (𝑣 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑣 = (𝑢𝑌)))
4239, 40, 41syl2anc 411 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑣 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑣 = (𝑢𝑌)))
4342biimpa 296 . . . . . . . . 9 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑣 ∈ (𝐽t 𝑌)) → ∃𝑢𝐽 𝑣 = (𝑢𝑌))
4438, 43sylan2b 287 . . . . . . . 8 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑣𝐾) → ∃𝑢𝐽 𝑣 = (𝑢𝑌))
45 r19.29r 2645 . . . . . . . . . 10 ((∃𝑢𝐽 𝑣 = (𝑢𝑌) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → ∃𝑢𝐽 (𝑣 = (𝑢𝑌) ∧ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
4635biantrud 304 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑃𝑢 ↔ (𝑃𝑢𝑃𝑌)))
47 elin 3357 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (𝑢𝑌) ↔ (𝑃𝑢𝑃𝑌))
4846, 47bitr4di 198 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑃𝑢𝑃 ∈ (𝑢𝑌)))
49 lmss.2 . . . . . . . . . . . . . . . . . . . . 21 𝑍 = (ℤ𝑀)
5049uztrn2 9673 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
51 lmss.7 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹:𝑍𝑌)
5251adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹:𝑍𝑌)
5352ffvelcdmda 5722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ 𝑌)
5453biantrud 304 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 ↔ ((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑌)))
55 elin 3357 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑘) ∈ (𝑢𝑌) ↔ ((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑌))
5654, 55bitr4di 198 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
5750, 56sylan2 286 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
5857anassrs 400 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
5958ralbidva 2503 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))
6059rexbidva 2504 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))
6148, 60imbi12d 234 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
6261adantr 276 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
6362biimpd 144 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
64 eleq2 2270 . . . . . . . . . . . . . . 15 (𝑣 = (𝑢𝑌) → (𝑃𝑣𝑃 ∈ (𝑢𝑌)))
65 eleq2 2270 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑢𝑌) → ((𝐹𝑘) ∈ 𝑣 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
6665rexralbidv 2533 . . . . . . . . . . . . . . 15 (𝑣 = (𝑢𝑌) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))
6764, 66imbi12d 234 . . . . . . . . . . . . . 14 (𝑣 = (𝑢𝑌) → ((𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) ↔ (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
6867imbi2d 230 . . . . . . . . . . . . 13 (𝑣 = (𝑢𝑌) → (((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)) ↔ ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))))
6963, 68syl5ibrcom 157 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (𝑣 = (𝑢𝑌) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣))))
7069impd 254 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → ((𝑣 = (𝑢𝑌) ∧ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7170rexlimdva 2624 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∃𝑢𝐽 (𝑣 = (𝑢𝑌) ∧ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7245, 71syl5 32 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ((∃𝑢𝐽 𝑣 = (𝑢𝑌) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7372expdimp 259 . . . . . . . 8 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ ∃𝑢𝐽 𝑣 = (𝑢𝑌)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7444, 73syldan 282 . . . . . . 7 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑣𝐾) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7574ralrimdva 2587 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7639adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → 𝐽 ∈ Top)
7740adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → 𝑌𝑉)
78 simpr 110 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → 𝑢𝐽)
79 elrestr 13123 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑌𝑉𝑢𝐽) → (𝑢𝑌) ∈ (𝐽t 𝑌))
8076, 77, 78, 79syl3anc 1250 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (𝑢𝑌) ∈ (𝐽t 𝑌))
8180, 16eleqtrrdi 2300 . . . . . . . . 9 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (𝑢𝑌) ∈ 𝐾)
8267rspcv 2874 . . . . . . . . 9 ((𝑢𝑌) ∈ 𝐾 → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
8381, 82syl 14 . . . . . . . 8 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
8483, 62sylibrd 169 . . . . . . 7 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
8584ralrimdva 2587 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
8675, 85impbid 129 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
8737, 86anbi12d 473 . . . 4 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ((𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) ↔ (𝑃 ∈ (𝑌 𝐽) ∧ ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣))))
8839, 3sylib 122 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐽))
89 lmss.6 . . . . . 6 (𝜑𝑀 ∈ ℤ)
9089adantr 276 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑀 ∈ ℤ)
9152ffnd 5432 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹 Fn 𝑍)
92 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ran 𝐹 𝐽)
93 df-f 5280 . . . . . 6 (𝐹:𝑍 𝐽 ↔ (𝐹 Fn 𝑍 ∧ ran 𝐹 𝐽))
9491, 92, 93sylanbrc 417 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹:𝑍 𝐽)
95 eqidd 2207 . . . . 5 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9688, 49, 90, 94, 95lmbrf 14731 . . . 4 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))))
9720adantr 276 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐾 ∈ (TopOn‘(𝑌 𝐽)))
9852frnd 5441 . . . . . . 7 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ran 𝐹𝑌)
9998, 92ssind 3398 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ran 𝐹 ⊆ (𝑌 𝐽))
100 df-f 5280 . . . . . 6 (𝐹:𝑍⟶(𝑌 𝐽) ↔ (𝐹 Fn 𝑍 ∧ ran 𝐹 ⊆ (𝑌 𝐽)))
10191, 99, 100sylanbrc 417 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹:𝑍⟶(𝑌 𝐽))
10297, 49, 90, 101, 95lmbrf 14731 . . . 4 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝐹(⇝𝑡𝐾)𝑃 ↔ (𝑃 ∈ (𝑌 𝐽) ∧ ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣))))
10387, 96, 1023bitr4d 220 . . 3 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃))
104103ex 115 . 2 (𝜑 → ((𝑃 𝐽 ∧ ran 𝐹 𝐽) → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃)))
10514, 32, 104pm5.21ndd 707 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wrex 2486  cin 3166  wss 3167   cuni 3852   class class class wbr 4047   × cxp 4677  ran crn 4680   Fn wfn 5271  wf 5272  cfv 5276  (class class class)co 5951  cc 7930  cz 9379  cuz 9655  t crest 13115  Topctop 14513  TopOnctopon 14526  𝑡clm 14703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pm 6745  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-rest 13117  df-topgen 13136  df-top 14514  df-topon 14527  df-bases 14559  df-lm 14706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator