| Step | Hyp | Ref
| Expression |
| 1 | | lmss.4 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ Top) |
| 2 | | eqid 2196 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 3 | 2 | toptopon 14254 |
. . . . . 6
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 4 | 1, 3 | sylib 122 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 5 | | lmcl 14481 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ∪ 𝐽) |
| 6 | 4, 5 | sylan 283 |
. . . 4
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ∪ 𝐽) |
| 7 | | lmfss 14480 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × ∪ 𝐽)) |
| 8 | 4, 7 | sylan 283 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × ∪ 𝐽)) |
| 9 | | rnss 4896 |
. . . . . 6
⊢ (𝐹 ⊆ (ℂ × ∪ 𝐽)
→ ran 𝐹 ⊆ ran
(ℂ × ∪ 𝐽)) |
| 10 | 8, 9 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → ran 𝐹 ⊆ ran (ℂ × ∪ 𝐽)) |
| 11 | | rnxpss 5101 |
. . . . 5
⊢ ran
(ℂ × ∪ 𝐽) ⊆ ∪ 𝐽 |
| 12 | 10, 11 | sstrdi 3195 |
. . . 4
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → ran 𝐹 ⊆ ∪ 𝐽) |
| 13 | 6, 12 | jca 306 |
. . 3
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) |
| 14 | 13 | ex 115 |
. 2
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 → (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽))) |
| 15 | | inss2 3384 |
. . . . 5
⊢ (𝑌 ∩ ∪ 𝐽)
⊆ ∪ 𝐽 |
| 16 | | lmss.1 |
. . . . . . 7
⊢ 𝐾 = (𝐽 ↾t 𝑌) |
| 17 | | lmss.3 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 18 | | resttopon2 14414 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝑌 ∈ 𝑉) → (𝐽 ↾t 𝑌) ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))) |
| 19 | 4, 17, 18 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → (𝐽 ↾t 𝑌) ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))) |
| 20 | 16, 19 | eqeltrid 2283 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))) |
| 21 | | lmcl 14481 |
. . . . . 6
⊢ ((𝐾 ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))
∧ 𝐹(⇝𝑡‘𝐾)𝑃) → 𝑃 ∈ (𝑌 ∩ ∪ 𝐽)) |
| 22 | 20, 21 | sylan 283 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → 𝑃 ∈ (𝑌 ∩ ∪ 𝐽)) |
| 23 | 15, 22 | sselid 3181 |
. . . 4
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → 𝑃 ∈ ∪ 𝐽) |
| 24 | | lmfss 14480 |
. . . . . . . 8
⊢ ((𝐾 ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))
∧ 𝐹(⇝𝑡‘𝐾)𝑃) → 𝐹 ⊆ (ℂ × (𝑌 ∩ ∪ 𝐽))) |
| 25 | 20, 24 | sylan 283 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → 𝐹 ⊆ (ℂ × (𝑌 ∩ ∪ 𝐽))) |
| 26 | | rnss 4896 |
. . . . . . 7
⊢ (𝐹 ⊆ (ℂ × (𝑌 ∩ ∪ 𝐽))
→ ran 𝐹 ⊆ ran
(ℂ × (𝑌 ∩
∪ 𝐽))) |
| 27 | 25, 26 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → ran 𝐹 ⊆ ran (ℂ × (𝑌 ∩ ∪ 𝐽))) |
| 28 | | rnxpss 5101 |
. . . . . 6
⊢ ran
(ℂ × (𝑌 ∩
∪ 𝐽)) ⊆ (𝑌 ∩ ∪ 𝐽) |
| 29 | 27, 28 | sstrdi 3195 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → ran 𝐹 ⊆ (𝑌 ∩ ∪ 𝐽)) |
| 30 | 29, 15 | sstrdi 3195 |
. . . 4
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → ran 𝐹 ⊆ ∪ 𝐽) |
| 31 | 23, 30 | jca 306 |
. . 3
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) |
| 32 | 31 | ex 115 |
. 2
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐾)𝑃 → (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽))) |
| 33 | | simprl 529 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝑃 ∈ ∪ 𝐽) |
| 34 | | lmss.5 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ 𝑌) |
| 35 | 34 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝑃 ∈ 𝑌) |
| 36 | 35, 33 | elind 3348 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝑃 ∈ (𝑌 ∩ ∪ 𝐽)) |
| 37 | 33, 36 | 2thd 175 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝑃 ∈ ∪ 𝐽 ↔ 𝑃 ∈ (𝑌 ∩ ∪ 𝐽))) |
| 38 | 16 | eleq2i 2263 |
. . . . . . . . 9
⊢ (𝑣 ∈ 𝐾 ↔ 𝑣 ∈ (𝐽 ↾t 𝑌)) |
| 39 | 1 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐽 ∈ Top) |
| 40 | 17 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝑌 ∈ 𝑉) |
| 41 | | elrest 12917 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑉) → (𝑣 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌))) |
| 42 | 39, 40, 41 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝑣 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌))) |
| 43 | 42 | biimpa 296 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑣 ∈ (𝐽 ↾t 𝑌)) → ∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌)) |
| 44 | 38, 43 | sylan2b 287 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑣 ∈ 𝐾) → ∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌)) |
| 45 | | r19.29r 2635 |
. . . . . . . . . 10
⊢
((∃𝑢 ∈
𝐽 𝑣 = (𝑢 ∩ 𝑌) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) → ∃𝑢 ∈ 𝐽 (𝑣 = (𝑢 ∩ 𝑌) ∧ (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢))) |
| 46 | 35 | biantrud 304 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝑃 ∈ 𝑢 ↔ (𝑃 ∈ 𝑢 ∧ 𝑃 ∈ 𝑌))) |
| 47 | | elin 3346 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ (𝑢 ∩ 𝑌) ↔ (𝑃 ∈ 𝑢 ∧ 𝑃 ∈ 𝑌)) |
| 48 | 46, 47 | bitr4di 198 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝑃 ∈ 𝑢 ↔ 𝑃 ∈ (𝑢 ∩ 𝑌))) |
| 49 | | lmss.2 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 50 | 49 | uztrn2 9619 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 51 | | lmss.7 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹:𝑍⟶𝑌) |
| 52 | 51 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐹:𝑍⟶𝑌) |
| 53 | 52 | ffvelcdmda 5697 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑌) |
| 54 | 53 | biantrud 304 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑢 ↔ ((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑌))) |
| 55 | | elin 3346 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌) ↔ ((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑌)) |
| 56 | 54, 55 | bitr4di 198 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
| 57 | 50, 56 | sylan2 286 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
| 58 | 57 | anassrs 400 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
| 59 | 58 | ralbidva 2493 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
| 60 | 59 | rexbidva 2494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
| 61 | 48, 60 | imbi12d 234 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ↔ (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
| 62 | 61 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ↔ (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
| 63 | 62 | biimpd 144 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
| 64 | | eleq2 2260 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑢 ∩ 𝑌) → (𝑃 ∈ 𝑣 ↔ 𝑃 ∈ (𝑢 ∩ 𝑌))) |
| 65 | | eleq2 2260 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = (𝑢 ∩ 𝑌) → ((𝐹‘𝑘) ∈ 𝑣 ↔ (𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
| 66 | 65 | rexralbidv 2523 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑢 ∩ 𝑌) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
| 67 | 64, 66 | imbi12d 234 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = (𝑢 ∩ 𝑌) → ((𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣) ↔ (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
| 68 | 67 | imbi2d 230 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (𝑢 ∩ 𝑌) → (((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣)) ↔ ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))))) |
| 69 | 63, 68 | syl5ibrcom 157 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → (𝑣 = (𝑢 ∩ 𝑌) → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣)))) |
| 70 | 69 | impd 254 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → ((𝑣 = (𝑢 ∩ 𝑌) ∧ (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
| 71 | 70 | rexlimdva 2614 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (∃𝑢 ∈ 𝐽 (𝑣 = (𝑢 ∩ 𝑌) ∧ (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
| 72 | 45, 71 | syl5 32 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ((∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
| 73 | 72 | expdimp 259 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ ∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌)) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
| 74 | 44, 73 | syldan 282 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑣 ∈ 𝐾) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
| 75 | 74 | ralrimdva 2577 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → ∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
| 76 | 39 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → 𝐽 ∈ Top) |
| 77 | 40 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → 𝑌 ∈ 𝑉) |
| 78 | | simpr 110 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → 𝑢 ∈ 𝐽) |
| 79 | | elrestr 12918 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑉 ∧ 𝑢 ∈ 𝐽) → (𝑢 ∩ 𝑌) ∈ (𝐽 ↾t 𝑌)) |
| 80 | 76, 77, 78, 79 | syl3anc 1249 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → (𝑢 ∩ 𝑌) ∈ (𝐽 ↾t 𝑌)) |
| 81 | 80, 16 | eleqtrrdi 2290 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → (𝑢 ∩ 𝑌) ∈ 𝐾) |
| 82 | 67 | rspcv 2864 |
. . . . . . . . 9
⊢ ((𝑢 ∩ 𝑌) ∈ 𝐾 → (∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣) → (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
| 83 | 81, 82 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → (∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣) → (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
| 84 | 83, 62 | sylibrd 169 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → (∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣) → (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢))) |
| 85 | 84 | ralrimdva 2577 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢))) |
| 86 | 75, 85 | impbid 129 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ↔ ∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
| 87 | 37, 86 | anbi12d 473 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ((𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) ↔ (𝑃 ∈ (𝑌 ∩ ∪ 𝐽) ∧ ∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣)))) |
| 88 | 39, 3 | sylib 122 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 89 | | lmss.6 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 90 | 89 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝑀 ∈ ℤ) |
| 91 | 52 | ffnd 5408 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐹 Fn 𝑍) |
| 92 | | simprr 531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ran 𝐹 ⊆ ∪ 𝐽) |
| 93 | | df-f 5262 |
. . . . . 6
⊢ (𝐹:𝑍⟶∪ 𝐽 ↔ (𝐹 Fn 𝑍 ∧ ran 𝐹 ⊆ ∪ 𝐽)) |
| 94 | 91, 92, 93 | sylanbrc 417 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐹:𝑍⟶∪ 𝐽) |
| 95 | | eqidd 2197 |
. . . . 5
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 96 | 88, 49, 90, 94, 95 | lmbrf 14451 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)))) |
| 97 | 20 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐾 ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))) |
| 98 | 52 | frnd 5417 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ran 𝐹 ⊆ 𝑌) |
| 99 | 98, 92 | ssind 3387 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ran 𝐹 ⊆ (𝑌 ∩ ∪ 𝐽)) |
| 100 | | df-f 5262 |
. . . . . 6
⊢ (𝐹:𝑍⟶(𝑌 ∩ ∪ 𝐽) ↔ (𝐹 Fn 𝑍 ∧ ran 𝐹 ⊆ (𝑌 ∩ ∪ 𝐽))) |
| 101 | 91, 99, 100 | sylanbrc 417 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐹:𝑍⟶(𝑌 ∩ ∪ 𝐽)) |
| 102 | 97, 49, 90, 101, 95 | lmbrf 14451 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝐹(⇝𝑡‘𝐾)𝑃 ↔ (𝑃 ∈ (𝑌 ∩ ∪ 𝐽) ∧ ∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣)))) |
| 103 | 87, 96, 102 | 3bitr4d 220 |
. . 3
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹(⇝𝑡‘𝐾)𝑃)) |
| 104 | 103 | ex 115 |
. 2
⊢ (𝜑 → ((𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹(⇝𝑡‘𝐾)𝑃))) |
| 105 | 14, 32, 104 | pm5.21ndd 706 |
1
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹(⇝𝑡‘𝐾)𝑃)) |