![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbss | GIF version |
Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
sbss | ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2755 | . 2 ⊢ 𝑦 ∈ V | |
2 | sbequ 1851 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝑥 ⊆ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ⊆ 𝐴)) | |
3 | sseq1 3193 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
4 | nfv 1539 | . . 3 ⊢ Ⅎ𝑥 𝑧 ⊆ 𝐴 | |
5 | sseq1 3193 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) | |
6 | 4, 5 | sbie 1802 | . 2 ⊢ ([𝑧 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴) |
7 | 1, 2, 3, 6 | vtoclb 2809 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1773 ⊆ wss 3144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-v 2754 df-in 3150 df-ss 3157 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |