| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbss | GIF version | ||
| Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| sbss | ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . 2 ⊢ 𝑦 ∈ V | |
| 2 | sbequ 1862 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝑥 ⊆ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ⊆ 𝐴)) | |
| 3 | sseq1 3215 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
| 4 | nfv 1550 | . . 3 ⊢ Ⅎ𝑥 𝑧 ⊆ 𝐴 | |
| 5 | sseq1 3215 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) | |
| 6 | 4, 5 | sbie 1813 | . 2 ⊢ ([𝑧 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴) |
| 7 | 1, 2, 3, 6 | vtoclb 2829 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1784 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 df-in 3171 df-ss 3178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |