Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbss | GIF version |
Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
sbss | ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . 2 ⊢ 𝑦 ∈ V | |
2 | sbequ 1833 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝑥 ⊆ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ⊆ 𝐴)) | |
3 | sseq1 3170 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
4 | nfv 1521 | . . 3 ⊢ Ⅎ𝑥 𝑧 ⊆ 𝐴 | |
5 | sseq1 3170 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) | |
6 | 4, 5 | sbie 1784 | . 2 ⊢ ([𝑧 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴) |
7 | 1, 2, 3, 6 | vtoclb 2787 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1755 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 df-in 3127 df-ss 3134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |