| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbss | GIF version | ||
| Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| sbss | ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . 2 ⊢ 𝑦 ∈ V | |
| 2 | sbequ 1886 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝑥 ⊆ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ⊆ 𝐴)) | |
| 3 | sseq1 3247 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
| 4 | nfv 1574 | . . 3 ⊢ Ⅎ𝑥 𝑧 ⊆ 𝐴 | |
| 5 | sseq1 3247 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) | |
| 6 | 4, 5 | sbie 1837 | . 2 ⊢ ([𝑧 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴) |
| 7 | 1, 2, 3, 6 | vtoclb 2858 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1808 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |