Step | Hyp | Ref
| Expression |
1 | | eqeq1 2177 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑧 = 𝐵)) |
2 | 1 | rexbidv 2471 |
. . . . 5
⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
3 | 2 | cbvabv 2295 |
. . . 4
⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
4 | 3 | sseq1i 3173 |
. . 3
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶) |
5 | | r19.23v 2579 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) |
6 | 5 | albii 1463 |
. . . 4
⊢
(∀𝑧∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) |
7 | | ralcom4 2752 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑧∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) |
8 | | abss 3216 |
. . . 4
⊢ ({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶 ↔ ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) |
9 | 6, 7, 8 | 3bitr4i 211 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶) |
10 | 4, 9 | bitr4i 186 |
. 2
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) |
11 | | nfv 1521 |
. . . . 5
⊢
Ⅎ𝑧 𝐵 ∈ 𝐶 |
12 | | eleq1 2233 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
13 | 11, 12 | ceqsalg 2758 |
. . . 4
⊢ (𝐵 ∈ 𝐷 → (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶)) |
14 | 13 | ralimi 2533 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐷 → ∀𝑥 ∈ 𝐴 (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶)) |
15 | | ralbi 2602 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶) → (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
16 | 14, 15 | syl 14 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
17 | 10, 16 | bitr2id 192 |
1
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶)) |