ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrnmpo GIF version

Theorem ralrnmpo 5967
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
ralrnmpo.2 (𝑧 = 𝐶 → (𝜑𝜓))
Assertion
Ref Expression
ralrnmpo (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∀𝑧 ∈ ran 𝐹𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜓))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐹   𝜓,𝑧   𝑥,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem ralrnmpo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21rnmpo 5963 . . . 4 ran 𝐹 = {𝑤 ∣ ∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶}
32raleqi 2669 . . 3 (∀𝑧 ∈ ran 𝐹𝜑 ↔ ∀𝑧 ∈ {𝑤 ∣ ∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶}𝜑)
4 eqeq1 2177 . . . . 5 (𝑤 = 𝑧 → (𝑤 = 𝐶𝑧 = 𝐶))
542rexbidv 2495 . . . 4 (𝑤 = 𝑧 → (∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶))
65ralab 2890 . . 3 (∀𝑧 ∈ {𝑤 ∣ ∃𝑥𝐴𝑦𝐵 𝑤 = 𝐶}𝜑 ↔ ∀𝑧(∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑))
7 ralcom4 2752 . . . 4 (∀𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∀𝑧𝑥𝐴 (∃𝑦𝐵 𝑧 = 𝐶𝜑))
8 r19.23v 2579 . . . . 5 (∀𝑥𝐴 (∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑))
98albii 1463 . . . 4 (∀𝑧𝑥𝐴 (∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∀𝑧(∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑))
107, 9bitr2i 184 . . 3 (∀𝑧(∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∀𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
113, 6, 103bitri 205 . 2 (∀𝑧 ∈ ran 𝐹𝜑 ↔ ∀𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
12 ralcom4 2752 . . . . . 6 (∀𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∀𝑧𝑦𝐵 (𝑧 = 𝐶𝜑))
13 r19.23v 2579 . . . . . . 7 (∀𝑦𝐵 (𝑧 = 𝐶𝜑) ↔ (∃𝑦𝐵 𝑧 = 𝐶𝜑))
1413albii 1463 . . . . . 6 (∀𝑧𝑦𝐵 (𝑧 = 𝐶𝜑) ↔ ∀𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
1512, 14bitri 183 . . . . 5 (∀𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∀𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑))
16 nfv 1521 . . . . . . . 8 𝑧𝜓
17 ralrnmpo.2 . . . . . . . 8 (𝑧 = 𝐶 → (𝜑𝜓))
1816, 17ceqsalg 2758 . . . . . . 7 (𝐶𝑉 → (∀𝑧(𝑧 = 𝐶𝜑) ↔ 𝜓))
1918ralimi 2533 . . . . . 6 (∀𝑦𝐵 𝐶𝑉 → ∀𝑦𝐵 (∀𝑧(𝑧 = 𝐶𝜑) ↔ 𝜓))
20 ralbi 2602 . . . . . 6 (∀𝑦𝐵 (∀𝑧(𝑧 = 𝐶𝜑) ↔ 𝜓) → (∀𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∀𝑦𝐵 𝜓))
2119, 20syl 14 . . . . 5 (∀𝑦𝐵 𝐶𝑉 → (∀𝑦𝐵𝑧(𝑧 = 𝐶𝜑) ↔ ∀𝑦𝐵 𝜓))
2215, 21bitr3id 193 . . . 4 (∀𝑦𝐵 𝐶𝑉 → (∀𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∀𝑦𝐵 𝜓))
2322ralimi 2533 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀𝑥𝐴 (∀𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∀𝑦𝐵 𝜓))
24 ralbi 2602 . . 3 (∀𝑥𝐴 (∀𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∀𝑦𝐵 𝜓) → (∀𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∀𝑥𝐴𝑦𝐵 𝜓))
2523, 24syl 14 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∀𝑥𝐴𝑧(∃𝑦𝐵 𝑧 = 𝐶𝜑) ↔ ∀𝑥𝐴𝑦𝐵 𝜓))
2611, 25syl5bb 191 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∀𝑧 ∈ ran 𝐹𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346   = wceq 1348  wcel 2141  {cab 2156  wral 2448  wrex 2449  ran crn 4612  cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622  df-oprab 5857  df-mpo 5858
This theorem is referenced by:  txcnp  13065  txcnmpt  13067
  Copyright terms: Public domain W3C validator