![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iineq2 | GIF version |
Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iineq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2257 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) | |
2 | 1 | ralimi 2557 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
3 | ralbi 2626 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
5 | 4 | abbidv 2311 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶}) |
6 | df-iin 3915 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
7 | df-iin 3915 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
8 | 5, 6, 7 | 3eqtr4g 2251 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 ∩ ciin 3913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-ral 2477 df-iin 3915 |
This theorem is referenced by: iineq2i 3931 iineq2d 3932 |
Copyright terms: Public domain | W3C validator |