ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iineq2 GIF version

Theorem iineq2 3883
Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iineq2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)

Proof of Theorem iineq2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2230 . . . . 5 (𝐵 = 𝐶 → (𝑦𝐵𝑦𝐶))
21ralimi 2529 . . . 4 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
3 ralbi 2598 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑦𝐶))
42, 3syl 14 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑦𝐶))
54abbidv 2284 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵} = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶})
6 df-iin 3869 . 2 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
7 df-iin 3869 . 2 𝑥𝐴 𝐶 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶}
85, 6, 73eqtr4g 2224 1 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wcel 2136  {cab 2151  wral 2444   ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-iin 3869
This theorem is referenced by:  iineq2i  3885  iineq2d  3886
  Copyright terms: Public domain W3C validator