Step | Hyp | Ref
| Expression |
1 | | breq2 3993 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧)) |
2 | 1 | anbi2d 461 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ (𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧))) |
3 | 2 | rexralbidv 2496 |
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧))) |
4 | 3 | cbvralv 2696 |
. . 3
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧)) |
5 | | rphalfcl 9638 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ+) |
6 | | breq2 3993 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑥 / 2) → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
7 | 6 | anbi2d 461 |
. . . . . . . . 9
⊢ (𝑧 = (𝑥 / 2) → ((𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) ↔ (𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
8 | 7 | rexralbidv 2496 |
. . . . . . . 8
⊢ (𝑧 = (𝑥 / 2) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
9 | 8 | rspcv 2830 |
. . . . . . 7
⊢ ((𝑥 / 2) ∈ ℝ+
→ (∀𝑧 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
10 | 5, 9 | syl 14 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (∀𝑧 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
11 | 10 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑧 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
12 | | cau3lem.2 |
. . . . . . . . . 10
⊢ (𝜏 → 𝜓) |
13 | 12 | ralimi 2533 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)𝜏 → ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) |
14 | | r19.26 2596 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
15 | | fveq2 5496 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
16 | | cau3lem.4 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → (𝜓 ↔ 𝜃)) |
17 | 15, 16 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → (𝜓 ↔ 𝜃)) |
18 | 15 | oveq1d 5868 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) = ((𝐹‘𝑚)𝐷(𝐹‘𝑗))) |
19 | 18 | fveq2d 5500 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗)))) |
20 | 19 | breq1d 3999 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
21 | 17, 20 | anbi12d 470 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → ((𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) ↔ (𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
22 | 21 | cbvralv 2696 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) ↔ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
23 | 22 | biimpi 119 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
24 | 23 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
25 | 14, 24 | syl5bir 152 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → ((∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
26 | 25 | expdimp 257 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) |
27 | | cau3lem.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑍 ⊆
ℤ |
28 | 27 | sseli 3143 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
29 | | uzid 9501 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
30 | 28, 29 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑗)) |
31 | | fveq2 5496 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
32 | | cau3lem.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → (𝜓 ↔ 𝜒)) |
33 | 31, 32 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜒)) |
34 | 33 | rspcva 2832 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈
(ℤ≥‘𝑗) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → 𝜒) |
35 | 30, 34 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → 𝜒) |
36 | 35 | adantll 473 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → 𝜒) |
37 | 26, 36 | jctild 314 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))))) |
38 | | simplll 528 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝜑) |
39 | | simplrr 531 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝜃) |
40 | | simplrl 530 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝜒) |
41 | | cau3lem.6 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) |
42 | 38, 39, 40, 41 | syl3anc 1233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) |
43 | 42 | breq1d 3999 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2))) |
44 | 43 | anbi2d 461 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) ↔ ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)))) |
45 | | simpr 109 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝜓) |
46 | | simpllr 529 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ+) |
47 | 46 | rpred 9653 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ) |
48 | | cau3lem.7 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃) ∧ (𝜒 ∧ 𝑥 ∈ ℝ)) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
49 | 38, 45, 39, 40, 47, 48 | syl122anc 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
50 | 44, 49 | sylbid 149 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
51 | 50 | expd 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ((𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
52 | 51 | impr 377 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ 𝜃)) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ((𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
53 | 52 | an32s 563 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) ∧ (𝜒 ∧ 𝜃)) → ((𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
54 | 53 | anassrs 398 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) ∧ 𝜒) ∧ 𝜃) → ((𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
55 | 54 | expimpd 361 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) ∧ 𝜒) → ((𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
56 | 55 | ralimdv 2538 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) ∧ 𝜒) → (∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
57 | 56 | impr 377 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) |
58 | 57 | an32s 563 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) ∧ (𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) |
59 | 58 | expr 373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) ∧ 𝜓) → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
60 | | uzss 9507 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → (ℤ≥‘𝑘) ⊆
(ℤ≥‘𝑗)) |
61 | | ssralv 3211 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((ℤ≥‘𝑘) ⊆ (ℤ≥‘𝑗) → (∀𝑚 ∈
(ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
62 | 60, 61 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → (∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
63 | 59, 62 | sylan9 407 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ (𝜒 ∧ ∀𝑚 ∈
(ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) ∧ 𝜓) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
64 | 63 | an32s 563 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ (𝜒 ∧ ∀𝑚 ∈
(ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝜓) → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
65 | 64 | expimpd 361 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
66 | 65 | ralimdva 2537 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2)))) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
67 | 66 | ex 114 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
68 | 67 | com23 78 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
69 | 68 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
70 | 14, 69 | syl5bir 152 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → ((∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
71 | 70 | expdimp 257 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝜃 ∧ (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
72 | 37, 71 | mpdd 41 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
73 | 13, 72 | sylan2 284 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜏) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
74 | 73 | imdistanda 446 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → ((∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
75 | | r19.26 2596 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2))) |
76 | | r19.26 2596 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
77 | 74, 75, 76 | 3imtr4g 204 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
78 | 77 | reximdva 2572 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
79 | 11, 78 | syld 45 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑧 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
80 | 79 | ralrimdva 2550 |
. . 3
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑧) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
81 | 4, 80 | syl5bi 151 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
82 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (ℤ≥‘𝑘) =
(ℤ≥‘𝑗)) |
83 | 31 | oveq1d 5868 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) = ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) |
84 | 83 | fveq2d 5500 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) |
85 | 84 | breq1d 3999 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥)) |
86 | 82, 85 | raleqbidv 2677 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥)) |
87 | 86 | rspcv 2830 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥)) |
88 | 87 | ad2antlr 486 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥)) |
89 | | fveq2 5496 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
90 | 89 | oveq2d 5869 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) = ((𝐹‘𝑗)𝐷(𝐹‘𝑘))) |
91 | 90 | fveq2d 5500 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘)))) |
92 | 91 | breq1d 3999 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → ((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥)) |
93 | 92 | cbvralv 2696 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥) |
94 | 34 | anim2i 340 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ (ℤ≥‘𝑗) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓)) → (𝜑 ∧ 𝜒)) |
95 | 94 | anassrs 398 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → (𝜑 ∧ 𝜒)) |
96 | | simpr 109 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) |
97 | | cau3lem.5 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) = (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗)))) |
98 | 97 | breq1d 3999 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → ((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
99 | 98 | 3expia 1200 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜒) → (𝜓 → ((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
100 | 99 | ralimdv 2538 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜒) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
101 | 95, 96, 100 | sylc 62 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
102 | | ralbi 2602 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
103 | 101, 102 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
104 | 93, 103 | syl5bb 191 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → (∀𝑚 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
105 | 88, 104 | sylibd 148 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
106 | 13, 105 | sylan2 284 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜏) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
107 | 106 | imdistanda 446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑗)) → ((∀𝑘 ∈
(ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
108 | 30, 107 | sylan2 284 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
109 | | r19.26 2596 |
. . . . 5
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥)) |
110 | 108, 76, 109 | 3imtr4g 204 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
111 | 110 | reximdva 2572 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
112 | 111 | ralimdv 2538 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥))) |
113 | 81, 112 | impbid 128 |
1
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |